
1/59

Linear Algebra Primer

Note: the slides are based on CS131 (Juan Carlos et al) and EE263 (by Stephen Boyd et al)
at Stanford. Reorganized, revised, and typed by Hao Su

2/59

Outline

I Vectors and Matrices
I Basic matrix operations
I Determinants, norms, trace
I Special matrices

I Transformation Matrices
I Homogeneous matrices
I Translation

I Matrix inverse

I Matrix rank

3/59

Outline

I Vectors and Matrices
I Basic matrix operations
I Determinants, norms, trace
I Special matrices

I Transformation Matrices
I Homogeneous matrices
I Translation

I Matrix inverse

I Matrix rank

4/59

Vector

I A column vector v ∈ Rn×1 where

v =

v1
v2
...
vn

I A row vector vT ∈ R1×n where

vT = [v1v2 . . . vn]

T denotes the transpose operation

5/59

Vector

I We’ll default to column vectors in this class

v =

v1
v2
...
vn

I You’ll want to keep track of the orientation of your vectors when

programming in Python

6/59

Vectors have two main uses

I Vectors can represent an
offset in 2D or 3D space

I Points are just vectors from
the origin

I Data (pixels, gradients at
an image keypoint, etc) can
also be treated as a vector

I Such vectors do not have a
geometric interpretation,
but calculations like
“distance” can still have
value

7/59

Matrix

I A matrix A ∈ Rm×n is an array of numbers with size m by n, i.e., m
rows and n columns

A =

a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n

...
...

am1 am2 am3 . . . amn

I if m = n, we say that A is square.

8/59

Images

I Python represents an image as a matrix of pixel brightness

I Note that the upper left corner is (y , x) = [0, 0]

9/59

Color Images

I Grayscale images have one number per pixel, and are stored as an
m × n matrix

I Color images have 3 numbers per pixel – red, green, and blue
brightness (RGB)

I stored as an m × n × 3 matrix

10/59

Basic Matrix Operations

We will discuss:

I Addition

I Scaling

I Dot product

I Multiplication

I Transpose

I Inverse/pseudo-inverse

I Determinant/trace

11/59

Matrix Operations

I Addition [
a b
c d

]
+

[
1 2
3 4

]
=

[
a + 1 b + 2
c + 3 d + 4

]
I Can only add a matrix with matching dimensions or a scalar[

a b
c d

]
+ 7 =

[
a + 7 b + 7
c + 7 d + 7

]
I Scaling [

a b
c d

]
× 3 =

[
3a 3b
3c 3d

]

12/59

Vectors

I Norm: ‖x‖2 =
√∑n

i=1 x
2
i

I More formally, a norm is any function f : Rn → R that satisfies 4
proerties:

I Non-Negativity: For all x ∈ Rn, f (x) ≥ 0
I Definiteness: f (x) = 0 if and only if x = 0
I Homogeneity: For all xRn, t ∈ R, f (tx) = |t|f (x)
I Triangle inequality: For all x , y ∈ Rn, f (x + y) ≤ f (x) + f (y)

13/59

Vector Operations

I Example norms

‖x‖1 =
n∑

i=1

|xi |∞ ‖x‖∞ = max
i
|xi |

I General `p norms:

‖x‖p =

(
n∑

i=1

|xi |p
)1/p

14/59

Vector Operations

I Inner product (dot product) of vectors
I Multiply corresponding entries of two vectors and add up the result
I x · y is also |x ||y | cos(the angel between x and y)

xT y = [x1 . . . xn]

y1...
yn

 =
n∑

i=1

xiyi (scalar)

15/59

Vector Operations

I Inner product (dot product) of vectors
I If B is a unit vector, then A · B gives the length of A, which lies in

the direction of B

16/59

Matrix Operations

I The product of two matrices

A ∈ Rm×n,B ∈ Rn×p

C = AB ∈ Rm×p

Cij =
n∑

i=1

AikBkj

C = AB =

−aT1 −
−aT2 −

...
−aTm−

 | | |
b1 b2 · · · bp
| | |

 =

aT1 b1 aT1 b2 · · · aT1 bp
aT2 b1 aT2 b2 · · · aT2 bp

...
...

. . .
...

aTmb1 aTmb2 · · · aTmbp

17/59

Matrix Operations

Multiplication example:

Each entry of the matrix
product is made by tak-
ing the dot product of the
corresponding row in the
left matrix, with the cor-
responding column in the
right one.

18/59

Matrix Operations

I The product of two matrices
Matrix multiplication is associative: (AB)C=A(BC)
Matrix multiplication is distributive: A(B+C)=AB+AC
Matrix multiplication is, in general, not commutative; that is, it can
be the case that AB 6= BA (For example, if A ∈ Rm×n and
B ∈ Rn×q, the matrix product BA does not even exist if m and q
are not equal!)

19/59

Matrix Operations

I Powers
I By convention, we can refer to the matrix product AA as A2, and

AAA as A3, etc.
I Obviously only square matrices can be multiplied that way

20/59

Matrix Operations

I Transpose – flip matrix, so row 1 becomes column 10 1
2 3
4 5

T

=

[
0 2 4
1 3 5

]
I A useful identity:

(ABC)T = CTBTAT

21/59

Matrix Operations

I Determinant
I det(A) returns a scalar
I Represents area (or volume) of the parallelogram described by the

vectors in the rows of the matrix

I For A =

[
a b
c d

]
, det(A) = ad − bc

I Properties:

det(AB) = det(A) det(B)

det(AB) = det(BA)

det(A−1) =
1

det(A)

det(AT) = det(A)

det(A) = 0 ⇐⇒ A is singular

22/59

Matrix Operations

I Trace
I trace(A) = sum of diagonal elements

tr(

[
1 3
5 7

]
) = 1 + 7 = 8

I Invariant to a lot of transformations, so it’s used sometimes in
proofs. (Rarely used in this class, though)

I Properties:

tr(AB) = tr(BA)

tr(A + B) = tr(A) + tr(B)

tr(ABC) = tr(BCA) = tr(CAB)

23/59

Matrix Operations

I Vector norms

‖x‖1 =
n∑

i=1

|xi | ‖x‖∞ = max
i
|xi |

‖x‖2 =

√√√√ n∑
i=1

x2i ‖x‖p =

(
n∑

i=1

|xi |p
)1/p

I Matrix norms: Norms can also be defined for matrices, such as

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

A2
ij =

√
tr(ATA)

24/59

Special Matrices

I Identity matrix I

I3×3 =

1 0 0
0 1 0
0 0 1

I Diagonal matrix 3 0 0

0 7 0
0 0 2.5

25/59

Special Matrices

I Symmetric matrix: AT = A 1 2 5
2 1 7
5 7 1

I Skew-symmetric matrix: AT = −A0 −2 −5

2 0 −7
5 7 0

26/59

Outline

I Vectors and Matrices
I Basic matrix operations
I Determinants, norms, trace
I Special matrices

I Transformation Matrices
I Homogeneous matrices
I Translation

I Matrix inverse

I Matrix rank

27/59

Transformation

I Matrices can be used to transform vectors in useful ways, through
multiplication: x ′ = Ax

I Simplest is scaling: [
sx 0
0 sy

]
×
[
x
y

]
=

[
sxx
syy

]
(Verify by yourself that the matrix multiplication works out this way)

28/59

Rotation (2D case)

Counter-clockwise rotation by an angle θ

x ′ = cos θx − sin θy

y ′ = cos θy + sin θx

[
x ′

y ′

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
P ′ = RP

29/59

Transformation Matrices

I Multiple transformation matrices can be used to transform a point:

p′ = R2R1Sp

The effect of this is to apply their transformations one after the
other, from right to left In the example above, the result is
(R2(R1(Sp))) The result is exactly the same if we multiply the
matrices first, to form a single transformation matrix: p′(R2R1S)p

30/59

Transformation Matrices

I Multiple transformation matrices can be used to transform a point:

p′ = R2R1Sp

I The effect of this is to apply their transformations one after the
other, from right to left

In the example above, the result is

(R2(R1(Sp)))

The result is exactly the same if we multiply the matrices first, to
form a single transformation matrix: p′(R2R1S)p

31/59

Transformation Matrices

I Multiple transformation matrices can be used to transform a point:

p′ = R2R1Sp

I The effect of this is to apply their transformations one after the
other, from right to left

I In the example above, the result is

(R2(R1(Sp)))

The result is exactly the same if we multiply the matrices first, to
form a single transformation matrix:

p′(R2R1S)p

32/59

Transformation Matrices

I Multiple transformation matrices can be used to transform a point:

p′ = R2R1Sp

I The effect of this is to apply their transformations one after the
other, from right to left

I In the example above, the result is

(R2(R1(Sp)))

I The result is exactly the same if we multiply the matrices first, to
form a single transformation matrix:

p′ = (R2R1S)p

33/59

Homogeneous System

I In general, a matrix multiplication lets us linearly combine
components of a vector[

a b
c d

]
×
[
x
y

]
=

[
ax + by
cx + dy

]
I This is sufficient for scale, rotate, skew transformations
I But notice, we cannot add a constant! :(

34/59

Homogeneous System

I The (somewhat hacky) solution? Stick a “1” at the end of every
vector: a b c

d e f
0 0 1

×
xy

1

 =

ax + by + c
dx + ey + f

1

I Now we can rotate, scale, and skew like before, AND translate (note

how the multiplication works out, above)

I This is called “homogeneous coordinates”

35/59

Homogeneous System

I In homogeneous coordinates, the multiplication works out so the
rightmost column of the matrix is a vector that gets addeda b c

d e f
0 0 1

×
xy

1

 =

ax + by + c
dx + ey + f

1

I Generally, a homogeneous transformation matrix will have a bottom

row of [0 0 1], so that the result has a “1” at the bottom, too.

36/59

Homogeneous System

I One more thing we might want: to divide the result by something:
I Matrix multiplication cannot actually divide
I So, by convention, in homogeneous coordinates, we’ll divide the

result by its last coordinate after doing a matrix multiplicationxy
7

⇒
x/7
y/7

1

37/59

2D Transformation using Homogeneous Coordinates

38/59

2D Transformation using Homogeneous Coordinates

39/59

Scaling

40/59

Scaling Equation

41/59

Scaling & Translating

P ′′ = T · P ′ = T · (S · P) = T · S · P

42/59

Scaling & Translating

P ′′ = T · S · P =

1 0 tx
0 1 ty
0 0 1

 ·
sx 0 0

0 sy 0
0 0 1

xy
1

 =

=

sx 0 tx
0 sy ty
0 0 1

xy
1

 =

sxx + tx
syy + ty

1

 =

[
S t
0 1

]xy
1

43/59

Translation & Scaling versus Scaling & Translating

P ′′′ = T · S · P =

1 0 tx
0 1 ty
0 0 1

sx 0 0
0 sy 0
0 0 1

xy
1

 =

sx 0 tx
0 sy ty
0 0 1

xy
1

=

sxx + tx
syy + ty

1

44/59

Translation & Scaling 6= Scaling & Translating

P ′′′ = T · S · P =

1 0 tx
0 1 ty
0 0 1

sx 0 0
0 sy 0
0 0 1

xy
1

 =

sx 0 tx
0 sy ty
0 0 1

xy
1

=

sxx + tx
syy + ty

1

P ′′′ = S · T · P =

sx 0 0
0 sy 0
0 0 1

1 0 tx
0 1 ty
0 0 11

xy
1

 =

45/59

Translation & Scaling 6= Scaling & Translating

P ′′′ = T · S · P =

1 0 tx
0 1 ty
0 0 1

sx 0 0
0 sy 0
0 0 1

xy
1

 =

sx 0 tx
0 sy ty
0 0 1

xy
1

=

sxx + tx
syy + ty

1

P ′′′ = S · T · P =

sx 0 0
0 sy 0
0 0 1

1 0 tx
0 1 ty
0 0 11

xy
1

 =

=

sx 0 sx tx
0 sy sy ty
0 0 1

xy
1

 =

sxx + sx tx
syy + sy ty

1

46/59

Rotation

47/59

Rotation

Counter-clockwise rotation by an angle θ

x ′ = cos θx − sin θy

y ′ = cos θy + sin θx

[
x ′

y ′

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
P ′ = RP

48/59

Rotation Matrix Properties

[
x ′

y ′

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
A 2D rotation matrix 2× 2

Note: R belongs to the category of normal matrices and satisfies many
interesting properties:

R · RT = RT · R = I

det(R) = 1

49/59

Rotation Matrix Properties

I Transpose of a rotation matrix produces a rotation in the opposite
direction

R · RT = RT · R = I

det(R) = 1

I The rows of a rotation matrix are always mutually perpendicular
(a.k.a. orthogonal) unit vectors

I (and so are its columns)

50/59

Scaling+Rotation+Translation

P ′ = (T R S) P

P ′ = T · R · S · P =

1 0 tx
0 1 ty
0 0 1

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

sx 0 0
0 sy 0
0 0 1

xy
1

 =

=

cos θ − sin θ tx
sin θ cos θ ty

0 0 1

sx 0 0
0 sy 0
0 0 1

xy
1

 =

=

[
R t
0 1

] [
S 0
0 1

]xy
1

 =

[
RS t
0 1

]xy
1

51/59

Outline

I Vectors and Matrices
I Basic matrix operations
I Determinants, norms, trace
I Special matrices

I Transformation Matrices
I Homogeneous matrices
I Translation

I Matrix inverse

I Matrix rank

52/59

Inverse

I Given a matrix A, its inverse A−1 is a matrix such that
AA−1 = A−1A = I

I e.g., [
2 0
0 3

]−1
=

[
1
2 0
0 1

3

]
I Inverse does not always exist. If A−1 exists, A is invertible or

non-singular. Otherwise, it is singular.

I Useful identities, for matrices that are invertible:

(A−1)−1 = A

(AB)−1 = B−1A−1

A−T , (AT)−1 = (A−1)T

53/59

Outline

I Vectors and Matrices
I Basic matrix operations
I Determinants, norms, trace
I Special matrices

I Transformation Matrices
I Homogeneous matrices
I Translation

I Matrix inverse

I Matrix rank

54/59

Linear Independence

I Suppose we have a set of vectors v1, . . . , vn
I If we can express v1 as a linear combination of the other vectors

v2, . . . , vn, then v1 is linearly dependent on the other vectors
I The direction v1 can be expressed as a combination of the directions

v2, . . . , vn (e.g., v1 = 0.7v2 − 0.7v4)

If no vector is linearly dependent on the rest of the set, the set is
linearly independent.

I Common case: a set of vectors v1, . . . , vn is always linearly
independent if each vector is perpendicular to every other vector
(and non-zero).

55/59

Linear Independence

I Suppose we have a set of vectors v1, . . . , vn
I If we can express v1 as a linear combination of the other vectors

v2, . . . , vn, then v1 is linearly dependent on the other vectors
I The direction v1 can be expressed as a combination of the directions

v2, . . . , vn (e.g., v1 = 0.7v2 − 0.7v4)

I If no vector is linearly dependent on the rest of the set, the set is
linearly independent.

I Common case: a set of vectors v1, . . . , vn is always linearly
independent if each vector is perpendicular to every other vector
(and non-zero).

56/59

Linear Independence

Linearly independent set Not linearly independent

57/59

Matrix Rank

I Column/row rank

col-rank(A) = the maximum number of linearly independent column vectors of A

row-rank(A) = the maximum number of linearly independent row vectors of A

I Column rank always equals row rank

I Matrix rank

rank(A) , col-rank(A) = row-rank(A)

58/59

Matrix Rank

I For transformation matrices, the rank tells you the dimensions of the
output

I e.g. if rank of A is 1, then the transformation

p′ = Ap

maps points onto a line.

I Here’s a matrix with rank 1:[
1 1
2 2

]
×
[
x
y

]
=

[
x + y

2x + 2y

]

59/59

Matrix Rank

I If an m ×m matrix is rank m, we say it is “full rank”
I Maps an m × 1 vector uniquely to another m × 1 vector
I An inverse matrix can be found

I If rank < m, we say it is “singular”
I At least one dimension is getting collapsed. No way to look at the

result and tell what the input was
I Inverse does not exist

I Inverse also does not exist for non-square matrices

	Introduction

