Linear Algebra Primer

Note: the slides are based on CS131 (Juan Carlos et al) and EE263 (by Stephen Boyd et al) at Stanford. Reorganized, revised, and typed by Hao Su

Outline

- Vectors and Matrices
- Basic matrix operations
- Determinants, norms, trace
- Special matrices
- Transformation Matrices
- Homogeneous matrices
- Translation
- Matrix inverse
- Matrix rank

Outline

- Vectors and Matrices
- Basic matrix operations
- Determinants, norms, trace
- Special matrices
- Transformation Matrices
- Homogeneous matrices
- Translation
- Matrix inverse
- Matrix rank

Vector

- A column vector $v \in \mathbb{R}^{n \times 1}$ where

$$
v=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]
$$

- A row vector $v^{T} \in \mathbb{R}^{1 \times n}$ where

$$
v^{T}=\left[v_{1} v_{2} \ldots v_{n}\right]
$$

T denotes the transpose operation

Vector

- We'll default to column vectors in this class

$$
v=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]
$$

- You'll want to keep track of the orientation of your vectors when programming in Python

Vectors have two main uses

- Vectors can represent an offset in 2D or 3D space
- Points are just vectors from the origin
- Data (pixels, gradients at an image keypoint, etc) can also be treated as a vector
- Such vectors do not have a geometric interpretation, but calculations like "distance" can still have value

Matrix

- A matrix $A \in \mathbb{R}^{m \times n}$ is an array of numbers with size m by n, i.e., m rows and n columns

$$
A=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
\vdots & & & & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots & a_{m n}
\end{array}\right]
$$

- if $m=n$, we say that A is square.

Images

- Python represents an image as a matrix of pixel brightness
- Note that the upper left corner is $(y, x)=[0,0]$

Color Images

- Grayscale images have one number per pixel, and are stored as an $m \times n$ matrix
- Color images have 3 numbers per pixel - red, green, and blue brightness (RGB)
- stored as an $m \times n \times 3$ matrix

Basic Matrix Operations

We will discuss:

- Addition
- Scaling
- Dot product
- Multiplication
- Transpose
- Inverse/pseudo-inverse
- Determinant/trace

Matrix Operations

- Addition

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{ll}
a+1 & b+2 \\
c+3 & d+4
\end{array}\right]
$$

- Can only add a matrix with matching dimensions or a scalar

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+7=\left[\begin{array}{ll}
a+7 & b+7 \\
c+7 & d+7
\end{array}\right]
$$

- Scaling

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \times 3=\left[\begin{array}{ll}
3 a & 3 b \\
3 c & 3 d
\end{array}\right]
$$

Vectors

- Norm: $\|x\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$
- More formally, a norm is any function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ that satisfies 4 proerties:
- Non-Negativity: For all $x \in \mathbb{R}^{n}, f(x) \geq 0$
- Definiteness: $f(x)=0$ if and only if $x=0$
- Homogeneity: For all $x \mathbb{R}^{n}, t \in \mathbb{R}, f(t x)=|t| f(x)$
- Triangle inequality: For all $x, y \in \mathbb{R}^{n}, f(x+y) \leq f(x)+f(y)$

Vector Operations

- Example norms

$$
\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|_{\infty} \quad\|x\|_{\infty}=\max _{i}\left|x_{i}\right|
$$

- General ℓ_{p} norms:

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

Vector Operations

- Inner product (dot product) of vectors
- Multiply corresponding entries of two vectors and add up the result
- $x \cdot y$ is also $|x||y| \cos$ (the angel between x and y)

$$
x^{T} y=\left[x_{1} \ldots x_{n}\right]\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]=\sum_{i=1}^{n} x_{i} y_{i} \quad \text { (scalar) }
$$

Vector Operations

- Inner product (dot product) of vectors
- If B is a unit vector, then $A \cdot B$ gives the length of A, which lies in the direction of B

Matrix Operations

- The product of two matrices

$$
\begin{gathered}
A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p} \\
C=A B \in \mathbb{R}^{m \times p} \\
C_{i j}=\sum_{i=1}^{n} A_{i k} B_{k j} \\
C=A B=\left[\begin{array}{c}
-a_{1}^{T}- \\
-a_{2}^{T}- \\
\vdots \\
-a_{m}^{T}-
\end{array}\right]\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
b_{1} & b_{2} & \cdots & b_{p} \\
\mid & \mid & & \mid
\end{array}\right]=\left[\begin{array}{cccc}
a_{1}^{T} b_{1} & a_{1}^{T} b_{2} & \cdots & a_{1}^{T} b_{p} \\
a_{2}^{T} b_{1} & a_{2}^{T} b_{2} & \cdots & a_{2}^{T} b_{p} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m}^{T} b_{1} & a_{m}^{T} b_{2} & \cdots & a_{m}^{T} b_{p}
\end{array}\right]
\end{gathered}
$$

Matrix Operations

Multiplication example:
$A \times B$ $\left[\begin{array}{ll}1 & 3 \\ 5 & 7\end{array}\right]$

Each entry of the matrix product is made by taking the dot product of the corresponding row in the left matrix, with the corresponding column in the right one.

$$
0 \cdot 3+2 \cdot 7=14
$$

Matrix Operations

- The product of two matrices

Matrix multiplication is associative: $(A B) C=A(B C)$ Matrix multiplication is distributive: $A(B+C)=A B+A C$ Matrix multiplication is, in general, not commutative; that is, it can be the case that $A B \neq B A$ (For example, if $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times q}$, the matrix product $B A$ does not even exist if m and q are not equal!)

Matrix Operations

- Powers
- By convention, we can refer to the matrix product $A A$ as A^{2}, and $A A A$ as A^{3}, etc.
- Obviously only square matrices can be multiplied that way

Matrix Operations

- Transpose - flip matrix, so row 1 becomes column 1

$$
\left[\begin{array}{lll}
0 & 1 & \cdots \\
\hdashline & \ddots & \\
\hdashline
\end{array}\right] \quad\left[\begin{array}{ll}
0 & 1 \\
2 & 3 \\
4 & 5
\end{array}\right]^{T}=\left[\begin{array}{lll}
0 & 2 & 4 \\
1 & 3 & 5
\end{array}\right]
$$

- A useful identity:

$$
(A B C)^{T}=C^{T} B^{T} A^{T}
$$

Matrix Operations

- Determinant
- $\operatorname{det}(A)$ returns a scalar
- Represents area (or volume) of the parallelogram described by the vectors in the rows of the matrix
- For $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], \operatorname{det}(A)=a d-b c$
- Properties:

$$
\begin{aligned}
& \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B) \\
& \operatorname{det}(A B)=\operatorname{det}(B A) \\
& \operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)} \\
& \operatorname{det}\left(A^{T}\right)=\operatorname{det}(A) \\
& \operatorname{det}(A)=0 \Longleftrightarrow A \text { is singular }
\end{aligned}
$$

Matrix Operations

- Trace
- $\operatorname{trace}(A)=$ sum of diagonal elements

$$
\operatorname{tr}\left(\left[\begin{array}{ll}
1 & 3 \\
5 & 7
\end{array}\right]\right)=1+7=8
$$

- Invariant to a lot of transformations, so it's used sometimes in proofs. (Rarely used in this class, though)
- Properties:

$$
\begin{aligned}
\operatorname{tr}(A B) & =\operatorname{tr}(B A) \\
\operatorname{tr}(A+B) & =\operatorname{tr}(A)+\operatorname{tr}(B) \\
\operatorname{tr}(A B C) & =\operatorname{tr}(B C A)=\operatorname{tr}(C A B)
\end{aligned}
$$

Matrix Operations

- Vector norms

$$
\begin{array}{r}
\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right| \quad\|x\|_{\infty}=\max _{i}\left|x_{i}\right| \\
\|x\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
\end{array}
$$

- Matrix norms: Norms can also be defined for matrices, such as

$$
\|A\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j}^{2}}=\sqrt{\operatorname{tr}\left(A^{T} A\right)}
$$

Special Matrices

- Identity matrix I

$$
I_{3 \times 3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Diagonal matrix

$$
\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & 7 & 0 \\
0 & 0 & 2.5
\end{array}\right]
$$

Special Matrices

- Symmetric matrix: $A^{T}=A$

$$
\left[\begin{array}{lll}
1 & 2 & 5 \\
2 & 1 & 7 \\
5 & 7 & 1
\end{array}\right]
$$

- Skew-symmetric matrix: $A^{T}=-A$

$$
\left[\begin{array}{ccc}
0 & -2 & -5 \\
2 & 0 & -7 \\
5 & 7 & 0
\end{array}\right]
$$

Outline

- Vectors and Matrices
- Basic matrix operations
- Determinants, norms, trace
- Special matrices
- Transformation Matrices
- Homogeneous matrices
- Translation
- Matrix inverse
- Matrix rank

Transformation

- Matrices can be used to transform vectors in useful ways, through multiplication: $x^{\prime}=A x$
- Simplest is scaling:

$$
\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right] \times\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
s_{x} x \\
s_{y} y
\end{array}\right]
$$

(Verify by yourself that the matrix multiplication works out this way)

Rotation (2D case)

Counter-clockwise rotation by an angle θ

$$
\begin{gathered}
x^{\prime}=\cos \theta x-\sin \theta y \\
y^{\prime}=\cos \theta y+\sin \theta x \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
P^{\prime}=R P
\end{gathered}
$$

Transformation Matrices

- Multiple transformation matrices can be used to transform a point:

$$
p^{\prime}=R_{2} R_{1} S p
$$

Transformation Matrices

- Multiple transformation matrices can be used to transform a point:

$$
p^{\prime}=R_{2} R_{1} S p
$$

- The effect of this is to apply their transformations one after the other, from right to left

Transformation Matrices

- Multiple transformation matrices can be used to transform a point:

$$
p^{\prime}=R_{2} R_{1} S p
$$

- The effect of this is to apply their transformations one after the other, from right to left
- In the example above, the result is
$\left(R_{2}\left(R_{1}(S p)\right)\right)$

Transformation Matrices

- Multiple transformation matrices can be used to transform a point:

$$
p^{\prime}=R_{2} R_{1} S p
$$

- The effect of this is to apply their transformations one after the other, from right to left
- In the example above, the result is

$$
\left(R_{2}\left(R_{1}(S p)\right)\right)
$$

- The result is exactly the same if we multiply the matrices first, to form a single transformation matrix:

$$
p^{\prime}=\left(R_{2} R_{1} S\right) p
$$

Homogeneous System

- In general, a matrix multiplication lets us linearly combine components of a vector

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \times\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
a x+b y \\
c x+d y
\end{array}\right]
$$

- This is sufficient for scale, rotate, skew transformations
- But notice, we cannot add a constant! :(

Homogeneous System

- The (somewhat hacky) solution? Stick a "1" at the end of every vector:

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
a x+b y+c \\
d x+e y+f \\
1
\end{array}\right]
$$

- Now we can rotate, scale, and skew like before, AND translate (note how the multiplication works out, above)
- This is called "homogeneous coordinates"

Homogeneous System

- In homogeneous coordinates, the multiplication works out so the rightmost column of the matrix is a vector that gets added

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
a x+b y+c \\
d x+e y+f \\
1
\end{array}\right]
$$

- Generally, a homogeneous transformation matrix will have a bottom row of $\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$, so that the result has a "1" at the bottom, too.

Homogeneous System

- One more thing we might want: to divide the result by something:
- Matrix multiplication cannot actually divide
- So, by convention, in homogeneous coordinates, we'll divide the result by its last coordinate after doing a matrix multiplication

$$
\left[\begin{array}{l}
x \\
y \\
7
\end{array}\right] \Rightarrow\left[\begin{array}{c}
x / 7 \\
y / 7 \\
1
\end{array}\right]
$$

2D Transformation using Homogeneous Coordinates

2D Transformation using Homogeneous Coordinates

Scaling

Scaling Equation

$$
\begin{aligned}
& \mathbf{P}=(\mathrm{x}, \mathrm{y}) \rightarrow \mathbf{P}^{\prime}=\left(\mathrm{s}_{\mathrm{x}} \mathrm{x}, \mathrm{~s}_{\mathrm{y}} \mathrm{y}\right) \\
& \mathbf{P}=(x, y) \rightarrow(x, y, 1) \\
& \mathbf{P}^{\prime}=\left(s_{x} x, s_{y} y\right) \rightarrow\left(s_{x} x, s_{y} y, 1\right)
\end{aligned}
$$

$$
\mathbf{P}^{\prime} \rightarrow\left[\begin{array}{c}
s_{x} x \\
s_{y} y \\
1
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]}_{\mathbf{S}} \cdot\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{S}^{\prime} & \mathbf{0} \\
\mathbf{0} & \mathbf{1}
\end{array}\right] \cdot \mathbf{P}=\mathbf{S} \cdot \mathbf{P}
$$

Scaling \& Translating

$$
P^{\prime \prime}=T \cdot P^{\prime}=T \cdot(S \cdot P)=T \cdot S \cdot P
$$

Scaling \& Translating

$$
\begin{aligned}
& P^{\prime \prime}=T \cdot S \cdot P=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]= \\
& =\left[\begin{array}{ccc}
s_{x} & 0 & t_{x} \\
0 & s_{y} & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
s_{x} x+t_{x} \\
s_{y} y+t_{y} \\
1
\end{array}\right]=\left[\begin{array}{ll}
S & t \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
\end{aligned}
$$

Translation \& Scaling versus Scaling \& Translating

$$
\begin{aligned}
P^{\prime \prime \prime}=T \cdot S \cdot P & =\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{ccc}
s_{x} & 0 & t_{x} \\
0 & s_{y} & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
s_{x} x+t_{x} \\
s_{y} y+t_{y} \\
1
\end{array}\right]
\end{aligned}
$$

Translation \& Scaling \neq Scaling \& Translating

$$
\begin{aligned}
P^{\prime \prime \prime}=T \cdot S \cdot P & =\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{ccc}
s_{x} & 0 & t_{x} \\
0 & s_{y} & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
s_{x} x+t_{x} \\
s_{y} y+t_{y} \\
1
\end{array}\right]
\end{aligned}
$$

$$
P^{\prime \prime \prime}=S \cdot T \cdot P=\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 11
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=
$$

Translation \& Scaling \neq Scaling \& Translating

$$
\begin{aligned}
P^{\prime \prime \prime}=T \cdot S \cdot P & =\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{ccc}
s_{x} & 0 & t_{x} \\
0 & s_{y} & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
s_{x} x+t_{x} \\
s_{y} y+t_{y} \\
1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
P^{\prime \prime \prime} & =S \cdot T \cdot P=\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 11
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]= \\
& =\left[\begin{array}{ccc}
s_{x} & 0 & s_{x} t_{x} \\
0 & s_{y} & s_{y} t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{cc}
s_{x} x+s_{x} t_{x} \\
s_{y} y+s_{y} t_{y} \\
1
\end{array}\right]
\end{aligned}
$$

Rotation

Rotation

Counter-clockwise rotation by an angle θ

$$
\begin{gathered}
x^{\prime}=\cos \theta x-\sin \theta y \\
y^{\prime}=\cos \theta y+\sin \theta x \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
P^{\prime}=R P
\end{gathered}
$$

Rotation Matrix Properties

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

A 2 D rotation matrix 2×2
Note: R belongs to the category of normal matrices and satisfies many interesting properties:

$$
\begin{aligned}
& R \cdot R^{T}=R^{T} \cdot R=I \\
& \operatorname{det}(R)=1
\end{aligned}
$$

Rotation Matrix Properties

- Transpose of a rotation matrix produces a rotation in the opposite direction

$$
\begin{aligned}
R \cdot R^{T} & =R^{T} \cdot R=I \\
\operatorname{det}(R) & =1
\end{aligned}
$$

- The rows of a rotation matrix are always mutually perpendicular (a.k.a. orthogonal) unit vectors
- (and so are its columns)

Scaling+Rotation + Translation

$$
\begin{aligned}
& P^{\prime}=\left(\begin{array}{ll}
T & R
\end{array}\right) P \\
& P^{\prime}=T \cdot R \cdot S \cdot P=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]= \\
&=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & t_{x} \\
\sin \theta & \cos \theta & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]= \\
&=\left[\begin{array}{ll}
R & t \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
S & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{cc}
R S & t \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
\end{aligned}
$$

Outline

- Vectors and Matrices
- Basic matrix operations
- Determinants, norms, trace
- Special matrices
- Transformation Matrices
- Homogeneous matrices
- Translation
- Matrix inverse
- Matrix rank

Inverse

- Given a matrix A, its inverse A^{-1} is a matrix such that $A A^{-1}=A^{-1} A=I$
- e.g.,

$$
\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]^{-1}=\left[\begin{array}{ll}
\frac{1}{2} & 0 \\
0 & \frac{1}{3}
\end{array}\right]
$$

- Inverse does not always exist. If A^{-1} exists, A is invertible or non-singular. Otherwise, it is singular.
- Useful identities, for matrices that are invertible:

$$
\begin{aligned}
\left(A^{-1}\right)^{-1} & =A \\
(A B)^{-1} & =B^{-1} A^{-1} \\
A^{-T} & \triangleq\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}
\end{aligned}
$$

Outline

- Vectors and Matrices
- Basic matrix operations
- Determinants, norms, trace
- Special matrices
- Transformation Matrices
- Homogeneous matrices
- Translation
- Matrix inverse
- Matrix rank

Linear Independence

- Suppose we have a set of vectors v_{1}, \ldots, v_{n}
- If we can express v_{1} as a linear combination of the other vectors v_{2}, \ldots, v_{n}, then v_{1} is linearly dependent on the other vectors
- The direction v_{1} can be expressed as a combination of the directions $v_{2}, \ldots, v_{n}\left(\right.$ e.g., $\left.v_{1}=0.7 v_{2}-0.7 v_{4}\right)$

Linear Independence

- Suppose we have a set of vectors v_{1}, \ldots, v_{n}
- If we can express v_{1} as a linear combination of the other vectors v_{2}, \ldots, v_{n}, then v_{1} is linearly dependent on the other vectors
- The direction v_{1} can be expressed as a combination of the directions v_{2}, \ldots, v_{n} (e.g., $v_{1}=0.7 v_{2}-0.7 v_{4}$)
- If no vector is linearly dependent on the rest of the set, the set is linearly independent.
- Common case: a set of vectors v_{1}, \ldots, v_{n} is always linearly independent if each vector is perpendicular to every other vector (and non-zero).

Linear Independence

Linearly independent set
Not linearly independent

Matrix Rank

- Column/row rank
$\operatorname{col}-\operatorname{rank}(A)=$ the maximum number of linearly independent column vectors of A $\operatorname{row}-\operatorname{rank}(A)=$ the maximum number of linearly independent row vectors of A
- Column rank always equals row rank
- Matrix rank

$$
\operatorname{rank}(A) \triangleq \operatorname{col}-\operatorname{rank}(A)=\operatorname{row}-\operatorname{rank}(A)
$$

Matrix Rank

- For transformation matrices, the rank tells you the dimensions of the output
- e.g. if rank of A is 1 , then the transformation

$$
p^{\prime}=A p
$$

maps points onto a line.

- Here's a matrix with rank 1 :

$$
\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right] \times\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x+y \\
2 x+2 y
\end{array}\right]
$$

Matrix Rank

- If an $m \times m$ matrix is rank m, we say it is "full rank"
- Maps an $m \times 1$ vector uniquely to another $m \times 1$ vector
- An inverse matrix can be found
- If rank < m, we say it is "singular"
- At least one dimension is getting collapsed. No way to look at the result and tell what the input was
- Inverse does not exist
- Inverse also does not exist for non-square matrices

