Linear Algebra Primer

Note: the slides are based on CS131 (Juan Carlos et al) and EE263 (by Stephen Boyd et al)
at Stanford. Reorganized, revised, and typed by Hao Su
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Vector

» A column vector v € R"™1 where

Vi
V2
Vv =
Vn
» A row vector v € R*" where
vl = [viva. ..

T denotes the transpose operation

Val



Vector

» We'll default to column vectors in this class

» You'll want to keep track of the orientation of your vectors when
programming in Python



Vectors have two main uses

y » Data (pixels, gradients at
an image keypoint, etc) can
also be treated as a vector

» Such vectors do not have a
geometric interpretation,
but calculations like
“distance” can still have
value

> Vectors can represent an
offset in 2D or 3D space

» Points are just vectors from
the origin



Matrix

» A matrix A € R™*" is an array of numbers with size m by n, i.e., m
rows and n columns

d11 412 4813 ... din

dr1  d» a3 ... azp
A =

dml dm2 dm3 --- dmn

» if m = n, we say that A is square.



Images

183 180 210 112 125
189 8 177 97 114
100 71 81 195 165
167 12 242 203 181

44 25 9 48 192

» Python represents an image as a matrix of pixel brightness
» Note that the upper left corner is (y, x) = [0, 0]



Color Images

» Grayscale images have one number per pixel, and are stored as an
m X n matrix

» Color images have 3 numbers per pixel — red, green, and blue
brightness (RGB)

» stored as an m X n X 3 matrix

m N—>

7/




Basic Matrix Operations

We will discuss:

| 2

vV v v v v Y

Addition

Scaling

Dot product
Multiplication
Transpose
Inverse/pseudo-inverse

Determinant/trace



Matrix Operations

» Addition }
a b n 1 2] J|a+1 b+2
c dj 3 4 |c+3 d+4
> Can only add a matrix with matching dimensions or a scalar

[a b _[a+7 b+7
c d]+7_{c+7 d+7]

a b 3 3a 3b
c d " |3c 3d

> Scaling



Vectors

> Norm: [ix]lz = /S0, x?
» More formally, a norm is any function f : R” — R that satisfies 4
proerties:

> Non-Negativity: For all x € R", f(x) >0

Definiteness: f(x) =0 if and only if x =0

Homogeneity: For all xR", t € R, f(tx) = [t|f(x)

Triangle inequality: For all x,y € R", f(x +y) < f(x) + f(y)

vvyyvy



Vector Operations

» Example norms

n

Ixlls =D Il lxlloo = max|x

i=1

n 1/p
xllp = <Z x,-P>
i=1

» General £, norms:



Vector Operations

> Inner product (dot product) of vectors

> Multiply corresponding entries of two vectors and add up the result
> x -y is also |x||y| cos(the angel between x and y)

yi n
xXTy=[x..%| | : | = Zx,-y,- (scalar)
Y i=1



Vector Operations

> Inner product (dot product) of vectors

> If B is a unit vector, then A - B gives the length of A, which lies in
the direction of B




Matrix Operations

» The product of two matrices

AcR™" BecR™P

C=ABeR™P

Ci=Y_ AuBy
i=1

—a] — al by al by

—a;—— ‘ | | a2Tb1 aszg
C=AB= ) by b bp| =] . :

fa;f | | | albl a;bz

al b
alb

m

P
P

p



Matrix Operations

Multiplication example:

A x B
N

1
D

o2 |10
4 6| |34

0-3+2-7=14

3
7

14
54

Each entry of the matrix
product is made by tak-
ing the dot product of the
corresponding row in the
left matrix, with the cor-
responding column in the
right one.



Matrix Operations

» The product of two matrices
Matrix multiplication is associative: (AB)C=A(BC)
Matrix multiplication is distributive: A(B+C)=AB+AC
Matrix multiplication is, in general, not commutative; that is, it can
be the case that AB # BA (For example, if A € R™*" and
B € R"*9, the matrix product BA does not even exist if m and g
are not equall)



Matrix Operations

» Powers

» By convention, we can refer to the matrix product AA as A2, and
AAA as A%, etc.
» Obviously only square matrices can be multiplied that way



Matrix Operations

» Transpose — flip matrix, so row 1 becomes column 1

> A useful identity:
(ABC)T = C"BTAT



Matrix Operations

» Determinant

> det(A) returns a scalar
> Represents area (or volume) of the parallelogram described by the
vectors in_the rows of the matrix

a b
» For A= [c d] ,det(A) = ad — bc

> Properties:

21/59



Matrix Operations

> Trace
> trace(A) = sum of diagonal elements

tr([; 3]):1+7=8

» Invariant to a lot of transformations, so it's used sometimes in
proofs. (Rarely used in this class, though)
> Properties:

22/59



Matrix Operations

» Vector norms

n
Ixlly =Y "1xil [xllee = max [x;]
i=1

Ix1l2 =

n n 1/p
dYoxt o |Ixlly = (Z |x,-|">
i=1 i=1

» Matrix norms: Norms can also be defined for matrices, such as

ZZA \/tr(ATA)

i=1 j=1

|AllF =




Special Matrices

> Identity matrix /

» Diagonal matrix

hx3 =

O O W

O O

o N O

o



Special Matrices

» Symmetric matrix: AT = A

G R
~N =N

> Skew-symmetric matrix: AT = —A
0 -2
2 0
5 7

~

-5
—7
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Transformation

> Matrices can be used to transform vectors in useful ways, through
multiplication: x’ = Ax

5ol b) -

(Verify by yourself that the matrix multiplication works out this way)

> Simplest is scaling:



Rotation (2D case)

Counter-clockwise rotation by an angle

x' = cosfx — sin Oy
y' = cosfy + sin x

x| |cos@® —sinf]| |x
y'| 7 |sinf cosf | |y

P' = RP



Transformation Matrices

» Multiple transformation matrices can be used to transform a point:

p' = RRiSp



Transformation Matrices

» Multiple transformation matrices can be used to transform a point:
p' = R:R1Sp

> The effect of this is to apply their transformations one after the
other, from right to left



Transformation Matrices

» Multiple transformation matrices can be used to transform a point:
p' = R:R1Sp

» The effect of this is to apply their transformations one after the
other, from right to left

> In the example above, the result is

(R2(R1(Sp)))



Transformation Matrices

v

Multiple transformation matrices can be used to transform a point:

p/ = R2 R15p

v

The effect of this is to apply their transformations one after the
other, from right to left

v

In the example above, the result is

(R2(R1(Sp)))

The result is exactly the same if we multiply the matrices first, to
form a single transformation matrix:

v

p' = (RaRiS)p



Homogeneous System

» In general, a matrix multiplication lets us linearly combine
components of a vector

s e

» This is sufficient for scale, rotate, skew transformations
> But notice, we cannot add a constant! :(



Homogeneous System

» The (somewhat hacky) solution? Stick a “1" at the end of every

vector:
a b c X ax+ by +c¢
d e flx|y|l=|dx+ey+f
0 0 1 1 1

» Now we can rotate, scale, and skew like before, AND translate (note
how the multiplication works out, above)

» This is called “homogeneous coordinates”



Homogeneous System

» In homogeneous coordinates, the multiplication works out so the
rightmost column of the matrix is a vector that gets added

a b c X ax+ by +c¢
d e flx|y|l=|dx+ey+f
0 01 1 1

» Generally, a homogeneous transformation matrix will have a bottom
row of [0 0 1], so that the result has a “1" at the bottom, too.



Homogeneous System

» One more thing we might want: to divide the result by something:
> Matrix multiplication cannot actually divide
> So, by convention, in homogeneous coordinates, we'll divide the
result by its last coordinate after doing a matrix multiplication

X x/7

y| = |y/7
7 1



2D Transformation using Homogeneous Coordinates

A P’




2D Transformation using Homogeneous Coordinates

P’ P=(x,y) > (xy])
vl t=(t,.t,) > (t,.1,.])

------

X | tx x+tx_

P'>|y+t,[=[0 1 ¢}t
1| |oo 1
I t
= -P=T-P




Scaling

v

PI

v




Scaling Equation

PI
SY ! P= (X, y) — P'= (SXX,SyY)
y %
| P =(x,y) = (x,3,])
o PEGxsy) o Gasy)
sx| |s, 0 Offx
S'" 0
Pols,y|=|0 5, 0fy|- ‘P=S-P
0 1
1 0 1 1




Scaling & Translating

. G

.~

v

P'=T.-PP=T.(5-P)=T-S-P

PII



Scaling & Translating

[y



Translation & Scaling versus Scaling & Translating

P"=T-S.-P=

1 0 &
01 ¢
00 1

Sy + ity
1

SeX + tX]



Translation & Scaling # Scaling & Translating

1 0 t
P"=T.-S-P=1{0 1 t
0 0 1

[s.x + t |
= Sy t+ iy
1

Pr=5.T.P=

oco¥

Sx

0
0

oY o

0
Sy
0

= O O

0
0
1

o

—_

tx

11

Sx

o

—< X

0
Sy
0

tx

ty
1



Translation & Scaling # Scaling & Translating

1 0 t] |sx 0 Of [x sx O
P"=T-5-P=10 1 t| |0 s, Of[y|=1]0 s
0 0 1 0 0 1] |1 0 0
_SXXJr tX_
= |Syy t+ iy
- 1 -
[sc 0 0] [1 0 ¢t [x
P"=S.T-P=1|0 s, 0] |0 1 ¢t/ |y|=
|0 0 1]]0 0 11| |1




Rotation

PI




Rotation

Counter-clockwise rotation by an angle

x' = cosfx — sin Oy
y' = cosfy + sin x

x| |cos@® —sinf]| |x
y'| 7 |sinf cosf | |y

P' = RP



Rotation Matrix Properties

x| |cos@ —sinf| [x
y'| 7 |sinf cosf | |y
A 2D rotation matrix 2 x 2

Note: R belongs to the category of normal matrices and satisfies many
interesting properties:

R-RT=RT.R=1
det(R) =1



Rotation Matrix Properties

» Transpose of a rotation matrix produces a rotation in the opposite
direction

R-RT=RT.-R=1
det(R) =1

» The rows of a rotation matrix are always mutually perpendicular
(a.k.a. orthogonal) unit vectors

> (and so are its columns)



Scaling+Rotation+Translation

PP=(TRS)P
1 0 t| |cos@
P=T-R-S-P=1|0 1 t,| |sinf cosf
0 0 1 0 0
cosf —sinf t.| |sx 0 O] |x
= |sind cosf t,| |0 s, O] |y|=
0 0 1 0 0 1 (1

SRR
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Inverse

Given a matrix A, its inverse A~1 is a matrix such that

AA-L = A-1A = |
2 0]t i
— |2
o3 <[

e.g.,
Inverse does not always exist. If A1 exists, A is invertible or
non-singular. Otherwise, it is singular.

wik O

Useful identities, for matrices that are invertible:
(A=A
(AB)"!=B71A!
A—T é (AT)—l _ (A—l)T
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Linear Independence

» Suppose we have a set of vectors vq,..., Vv,

> If we can express vy as a linear combination of the other vectors
Va,...,V,, then vy is linearly dependent on the other vectors
» The direction v; can be expressed as a combination of the directions
Va,...,Vn (6.8, vi =0.7v2 — 0.7vs)



Linear Independence

» Suppose we have a set of vectors vy, ..., v,
» If we can express vy as a linear combination of the other vectors
Va,...,V,, then vy is linearly dependent on the other vectors
> The direction v; can be expressed as a combination of the directions
Vo, ..y Vo (6.8, vi = 0.7v2 — 0.7ws)
> If no vector is linearly dependent on the rest of the set, the set is
linearly independent.
» Common case: a set of vectors vi, ..., Vv, is always linearly
independent if each vector is perpendicular to every other vector
(and non-zero).



Linear Independence

Linearly independent set Not linearly independent




Matrix Rank

» Column/row rank

col-rank(A) = the maximum number of linearly independent column vectors of A

row-rank(A) = the maximum number of linearly independent row vectors of A

> Column rank always equals row rank

» Matrix rank

rank(A) £ col-rank(A) = row-rank(A)



Matrix Rank

> For transformation matrices, the rank tells you the dimensions of the
output

» e.g. if rank of Ais 1, then the transformation
p = Ap

maps points onto a line.

» Here's a matrix with rank 1:

2 o[-l



Matrix Rank

» If an m x m matrix is rank m, we say it is “full rank”

> Maps an m x 1 vector uniquely to another m x 1 vector
> An inverse matrix can be found

» If rank < m, we say it is “singular”

> At least one dimension is getting collapsed. No way to look at the
result and tell what the input was
> Inverse does not exist

> Inverse also does not exist for non-square matrices
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