CSE 152: Computer Vision Hao Su

Lecture 12: 3D Deep Learning

Credit: Stanford CS231n, L13

Robotics

Acquire Knowledge of 3D World by Learning

CVPR 2019 Submission Top 25 Keywords

The Representation Challenge of 3D Deep Learning

Rasterized form (regular grids)

Geometric form (irregular)

The Representation Challenge of 3D Deep Learning

Volumetric

Part Assembly

F(x) = 0

Point Cloud

Mesh (Graph CNN)

Implicit Shape

The Richness of 3D Learning Tasks

3D Analysis

Detection

Classification

Segmentation (object/scene)

Correspondence

The Richness of 3D Learning Tasks

3D Synthesis

Monocular 3D reconstruction

Shape completion Shape modeling

• 3D Classification

3D Reconstruction

Multi-View CNN

Given an Input Shape

Su et al., "Multi-view Convolutional Neural Networks for 3D Shape Recognition", ICCV 2015

Render with Multiple Virtual Cameras

Su et al., "Multi-view Convolutional Neural Networks for 3D Shape Recognition", ICCV 2015

The Rendered Images are Passed through CNN₁ for Image Features

Fine-tuning Pretrained Network Weights

Can reuse "pertrained" weights from image classification networks

View Pooling

... and then Passed through CNN₂ and to Generate Final Predictions

- Can leverage vast literature of image classification
- Can use pertrained features
- In many scenarios, such as fMRI images and LiDAR data, we are not quite able to "render" 3D into images (self-occlusion)

Volumetric CNN

Can we use CNNs but avoid projecting the 3D data to views first?

Straight-forward idea: Extend 2D grids 3D grids

Voxelization

Represent the occupancy of regular 3D grids

3D CNN on Volumetric Data

3D convolution uses 4D kernels

Complexity Issue

AlexNet, 2012

Input resolution: 224x224 224x224=50176

3DShapeNets, 2015

Input resolution: 30x30x30 224x224=27000

Complexity Issue

Polygon Mesh Occupancy Grid 30x30x30

Information loss in voxelization

Idea 1: Learn to Project

Idea: "X-ray" rendering + Image (2D) CNNs very low #param, very low computation

Su et al., "Volumetric and Multi-View CNNs for Object Classification on 3D Data", *CVPR 2016*

Many other works in autonomous driving that uses **bird's eye view** for object detection

More Principled: Sparsity of 3D Shapes

Store only the Occupied Grids

- Store the sparse surface signals
- Constrain the computation near the surface

Octree: Recursively Partition the Space

Each internal node has exactly eight children

Neighborhood searching: Hash table

Memory Efficiency

Implementation

- SparseConvNet
 - <u>https://github.com/facebookresearch/</u> <u>SparseConvNet</u>
 - Uses ResNet architecture
 - State-of-the-art for 3D analysis
 - Takes time to train

Point Networks

Point cloud (The most common 3D sensor data)

Directly Process Point Cloud Data

End-to-end learning for unstructured,

unordered point data

Qi, Charles R., et al. "**Pointnet: Deep learning on point** sets for 3d classification and segmentation", CVPR 2017 Zaheer, Manzil, et al. "**Deep sets**", NeurIPS 2017

Properties of a Desired Point Network

Point cloud: N **orderless** points, each represented by a D dim coordinate

Properties of a Desired Point Network

Point cloud: N **orderless** points, each represented by a D dim coordinate

2D array representation

Permutation invariance

Transformation invariance

Permutation Invariance

Point cloud: N **orderless** points, each represented by a D dim coordinate

2D array representation

Permutation Invariance: Symmetric Function

$$f(x_1, x_2, \dots, x_n) \equiv f(x_{\pi_1}, x_{\pi_2}, \dots, x_{\pi_n}), \quad x_i \in \mathbb{R}^D$$

Examples:

. . .

$$f(x_1, x_2, \dots, x_n) = \max\{x_1, x_2, \dots, x_n\}$$

$$f(x_1, x_2, \dots, x_n) = x_1 + x_2 + \dots + x_n$$

Construct a Symmetric Function

Observe:

 $f(x_1, x_2, ..., x_n) = \gamma \circ g(h(x_1), ..., h(x_n))$ is symmetric if g is symmetric

Construct a Symmetric Function

Observe:

 $f(x_1, x_2, ..., x_n) = \gamma \circ g(h(x_1), ..., h(x_n))$ is symmetric if g is symmetric

Construct a Symmetric Function

Observe:

 $f(x_1, x_2, ..., x_n) = \gamma \circ g(h(x_1), ..., h(x_n))$ is symmetric if g is symmetric

Q: What Symmetric Functions Can Be Constructed by PointNet?

PointNet (vanilla)

Universal Approximation Theorem

- Can approximate any "continuous" functions over sets
- "Continuous": A function value would change by little if the point positions vary by little

Interpretation to "First Layer" Output

- Think of each dimension as a "binary" variable (the truth is a soft version)
- It encodes whether the point is in a certain spatial region
- · The shape of the spatial region is learned

3D voxels of irregular boundaries!

Salient Points: Points with Non-Zero Gradient w.r.t. Positions

Salient points are discovered!

Limitations of PointNet

<u>Hierarchical</u> feature learning <u>Multiple levels</u> of abstraction

stride 2

3D voxel input

48 filters of

<u>Global</u> feature learning Either <u>one</u> point or <u>all</u> points

3D CNN (Wu et al.)

30

PointNet (vanilla) (Qi et al.)

• No local context for each point!

stride 1

512 filters of

stride 2

S

13

60 filters of

• Global feature depends on absolute coordinate. Hard to generalize to unseen scene configurations!

Points in Metric Space

- Learn "kernels" in 3D space and conduct convolution
- Kernels have compact spatial support
- For convolution, we need to find neighboring points
- Possible strategies for range query
 - Ball query (results in more stable features)
 - k-NN query (faster)

PointNet v2.0: Multi-Scale PointNet

Repeat

- Sample anchor points
- Find neighborhood of anchor points
- Apply PointNet in each neighborhood to mimic convolution

Point Convolution As Graph Convolution

- Points -> Nodes
- Neighborhood -> Edges
- Graph CNN for point cloud processing

Wang et al., "Dynamic Graph CNN for Learning on Point Clouds", *Transactions on Graphics, 2019*

Liu et al., "Relation-Shape Convolutional Neural Network for Point Cloud Analysis", CVPR 2019

- 3D Classification
- 3D Reconstruction

From Single Image to Point Cloud

• It is possible to generate a set (permutation invariant)

Groundtruth point cloud

Fan et al., "A Point Set Generation Network for 3D Object Reconstruction from a Single Image", CVPR 2017