CSE 152: Computer Vision Hao Su

Lecture 12: 3D Deep Learning

Credit: Stanford CS231n, L13

Broad Applications of 3D data

Acquire Knowledge of 3D World by Learning

A priori knowledge of the 3D world

CVPR 2019 Submission Top 25 Keywords

The Representation Challenge of 3D Deep Learning

Rasterized form
(regular grids)

Geometric form
(irregular)

The Representation Challenge of 3D Deep Learning

Multi-view

Point Cloud

Volumetric

Mesh (Graph CNN)

Part Assembly

$$
F(x)=0
$$

Implicit Shape

The Richness of 3D Learning Tasks

Classification

Detection

Segmentation (object/scene)

The Richness of 3D Learning Tasks

3D Synthesis

Monocular 3D reconstruction

Shape modeling

Agenda

- 3D Classification
-3D Reconstruction

Multi-View CNN

Given an Input Shape

Render with Multiple Virtual Cameras

The Rendered Images are Passed through CNN ${ }_{1}$ for Image Features

Fine-tuning Pretrained Network Weights

Can reuse "pertrained" weights from image classification networks

View Pooling

... and then Passed through CNN_{2} and to Generate Final Predictions

- Can leverage vast literature of image classification
- Can use pertrained features
- In many scenarios, such as fMRI images and LiDAR data, we are not quite able to "render" 3D into images (self-occlusion)

Volumetric CNN

Can we use CNNs but avoid projecting the 3D data to views first?

Straight-forward idea: Extend 2D grids 3D grids

Voxelization

Represent the occupancy of regular 3D grids

3D CNN on Volumetric Data

3D convolution uses 4D kernels

Complexity Issue

AlexNet, 2012
Input resolution: 224x224
224x224=50176

3DShapeNets, 2015

Input resolution: 30×30×30 224x224=27000

Complexity Issue

> Polygon Mesh Occupancy Grid $30 \times 30 \times 30$

Information loss in voxelization

Idea 1: Learn to Project

> Idea: "X-ray" rendering + Image (2D) CNNs very low \#param, very low computation

Su et al., "Volumetric and Multi-View CNNs for Object Classification on 3D Data", CVPR 2016

Many other works in autonomous driving that uses bird's eye view for object detection

More Principled: Sparsity of 3D Shapes

Store only the Occupied Grids

- Store the sparse surface signals
- Constrain the computation near the surface

Octree: Recursively Partition the Space

Each internal node has exactly eight children
Neighborhood searching: Hash table

Memory Efficiency

Implementation

- SparseConvNet
- https://github.com/facebookresearch/ SparseConvNet
- Uses ResNet architecture
- State-of-the-art for 3D analysis
- Takes time to train

Point Networks

Point cloud

(The most common 3D sensor data)

Directly Process Point Cloud Data

End-to-end learning for unstructured, unordered point data

Object Classification

Properties of a Desired Point Network

Point cloud: N orderless points, each represented by a
D dim coordinate

2D array representation

Properties of a Desired Point Network

Point cloud: N orderless points, each represented by a
D dim coordinate

2D array representation
Permutation invariance

Transformation invariance

Permutation Invariance

Point cloud: N orderless points, each represented by a D dim coordinate

2D array representation

Permutation Invariance: Symmetric Function

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \equiv f\left(x_{\pi_{1}}, x_{\pi_{2}}, \ldots, x_{\pi_{n}}\right), \quad x_{i} \in \mathbb{R}^{D}
$$

Examples:

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\max \left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \\
& f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1}+x_{2}+\ldots+x_{n}
\end{aligned}
$$

Construct a Symmetric Function

Observe:

$f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\gamma \circ g\left(h\left(x_{1}\right), \ldots, h\left(x_{n}\right)\right)$ is symmetric if g is symmetric

$(1,2,3)$	\square
$(1,1,1)$	\square
$(2,3,2)$	\square
$(2,3,4)$	\square

Construct a Symmetric Function

Observe:

$f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\gamma \circ g\left(h\left(x_{1}\right), \ldots, h\left(x_{n}\right)\right)$ is symmetric if g is symmetric

Construct a Symmetric Function

Observe:

$f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\gamma \circ g\left(h\left(x_{1}\right), \ldots, h\left(x_{n}\right)\right)$ is symmetric if g is symmetric

$(1,2,3)$	simple symmetric func
$(1,1,1)$	
$(2,3,2)$	-
$(2,3,4)$	PointNet (vanilla)

Q: What Symmetric Functions Can Be Constructed by PointNet?

Symmetric functions

PointNet (vanilla)

Universal Approximation Theorem

- Can approximate any "continuous" functions over sets
- "Continuous": A function value would change by little if the point positions vary by little

$$
\begin{aligned}
& \mid f(S)-\underbrace{}_{\gamma\left(\operatorname{MaX}_{x_{i} \in S}\right.}\left\{h\left(x_{i}\right)\right\})
\end{aligned}<\epsilon \lll \mathbb{R}^{d}, \quad \text { PointNet (vanilla) }
$$

Interpretation to "First Layer" Output

- Think of each dimension as a "binary" variable (the truth is a soft version)
- It encodes whether the point is in a certain spatial region
- The shape of the spatial region is learned

3D voxels of irregular boundaries!

Salient Points: Points with Non-Zero Gradient w.r.t. Positions

Salient points are discovered!

Limitations of PointNet

Hierarchical feature learning Multiple levels of abstraction

3D CNN (Wu et al.)

Global feature learning Either one point or all points

PointNet (vanilla) (Qi et al.)

- No local context for each point!
- Global feature depends on absolute coordinate. Hard to generalize to unseen scene configurations!

Points in Metric Space

- Learn "kernels" in 3D space and conduct convolution
- Kernels have compact spatial support
- For convolution, we need to find neighboring points
- Possible strategies for range query
- Ball query (results in more stable features)
- k-NN query (faster)

PointNet v2.0: Multi-Scale PointNet

N points in (x, y)

N_{1} points in ($\mathrm{x}, \mathrm{y}, \mathrm{f}$)

N_{2} points in ($\mathrm{x}, \mathrm{y}, \mathrm{f}^{\prime}$)

Repeat

- Sample anchor points
- Find neighborhood of anchor points
- Apply PointNet in each neighborhood to mimic convolution

Point Convolution As Graph Convolution

- Points -> Nodes
- Neighborhood -> Edges
- Graph CNN for point cloud processing

Wang et al., "Dynamic Graph CNN for Learning on Point Clouds", Transactions on Graphics, 2019

Liu et al., "Relation-Shape Convolutional Neural Network for Point Cloud Analysis", CVPR 2019

Agenda

- 3D Classification
-3D Reconstruction

From Single Image to Point Cloud

- It is possible to generate a set (permutation invariant)

Groundtruth point cloud

