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Acquire Knowledge of 3D World by Learning





The Representation Challenge 
of 3D Deep Learning

Rasterized form 
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Geometric form
(irregular)



The Representation Challenge 
of 3D Deep Learning

VolumetricMulti-view

Point Cloud Mesh (Graph CNN)

Part Assembly

Implicit Shape

F(x) = 0



The Richness of 3D Learning Tasks

3D Analysis

Classification Segmentation
(object/scene) Correspondence

Detection



The Richness of 3D Learning Tasks
3D Synthesis

Monocular 
3D reconstruction

Shape completion Shape modeling



Agenda

• 3D Classification

• 3D Reconstruction



Multi-View CNN



Given an Input Shape  

Su et al., "Multi-view Convolutional Neural Networks for 3D Shape Recognition”, ICCV 2015



Render with Multiple Virtual Cameras

view 1

view 2

view 3

view N

Su et al., "Multi-view Convolutional Neural Networks for 3D Shape Recognition”, ICCV 2015



The Rendered Images are Passed 
through CNN1 for Image Features
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CNN1: a ConvNet extracting 
image features

Su et al., "Multi-view Convolutional Neural Networks for 3D Shape Recognition”, ICCV 2015



Can reuse “pertrained” weights from 
image classification networks

Fine-tuning Pretrained Network Weights
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CNN1: a ConvNet extracting 
image features

Su et al., "Multi-view Convolutional Neural Networks for 3D Shape Recognition”, ICCV 2015



View Pooling
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CNN1
. . 
.

View pooling: element-
wise max-pooling 
across all views 

View 
pooling •

Su et al., "Multi-view Convolutional Neural Networks for 3D Shape Recognition”, ICCV 2015



•

… and then Passed through CNN2 
and to Generate Final Predictions
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…

CNN1

. . 
.

View 
pooling

CNN2:       a second 
ConvNet producing shape 
descriptors 

•
…

CNN2

softmax

Su et al., "Multi-view Convolutional Neural Networks for 3D Shape Recognition”, ICCV 2015



• Can leverage vast literature of image classification

• Can use pertrained features

• In many scenarios, such as fMRI images and LiDAR 
data, we are not quite able to “render” 3D into images 
(self-occlusion)



Volumetric CNN



Can we use CNNs but avoid projecting the 3D 
data to views first?

Straight-forward idea: Extend 2D grids 3D grids



Voxelization

Represent the occupancy of regular 3D grids



3D CNN on Volumetric Data

3D convolution uses 4D kernels



Complexity Issue

AlexNet, 2012 3DShapeNets, 
2015Input resolution: 224x224

Input resolution: 30x30x30224x224=50176

224x224=27000



Complexity Issue

Occupancy Grid
30x30x30

Polygon Mesh

Information loss in voxelization



Idea 1: Learn to Project

Su et al., “Volumetric and Multi-View CNNs for Object 
Classification on 3D Data”, CVPR 2016

Idea: “X-ray” rendering + Image (2D) CNNs 
very low #param, very low computation

Many other works in autonomous driving that 
uses bird’s eye view for object detection



More Principled: Sparsity of 3D Shapes

Resolution: 32 64 128
Occupancy:



Store only the Occupied Grids

• Store the sparse surface signals
• Constrain the computation near the surface



Octree: Recursively Partition the Space

Each internal node has exactly eight children
Neighborhood searching: Hash table



GPU Memory
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Implementation

• SparseConvNet
• https://github.com/facebookresearch/

SparseConvNet
• Uses ResNet architecture
• State-of-the-art for 3D analysis
• Takes time to train

Graham et al., “Submanifold Sparse Convolutional 
Networks”, arxiv

https://github.com/facebookresearch/SparseConvNet
https://github.com/facebookresearch/SparseConvNet


Point Networks



Point cloud
(The most common 3D sensor data)



Directly Process Point Cloud Data

End-to-end learning for unstructured, 

unordered point data 

PointNet Object 
Classification

Qi, Charles R., et al. "Pointnet: Deep learning on point 
sets for 3d classification and segmentation”, CVPR 2017
Zaheer, Manzil, et al. "Deep sets”, NeurIPS 2017 



2D array representation

N

D

Properties of a Desired Point Network 

Point cloud: N orderless points, each represented by a 
D dim coordinate



2D array representation

N

D

Permutation invariance

Transformation invariance

Properties of a Desired Point Network 

Point cloud: N orderless points, each represented by a 
D dim coordinate



Permutation Invariance

Point cloud: N orderless points, each represented by a 
D dim coordinate

2D array representation

N

D

N

D

represents the same set as 



Permutation Invariance: Symmetric Function

Examples:

…

f (x1, x2,…, xn ) = max{x1, x2,…, xn}
f (x1, x2,…, xn ) = x1 + x2 +…+ xn

f (x1, x2,…, xn ) ≡ f (xπ1 , xπ2 ,…, xπn ) xi ∈!
D,



Construct a Symmetric Function

(1,2,3)

(1,1,1)

(2,3,2)

(2,3,4)

h

Observe:

f (x1, x2,…, xn ) = γ ! g(h(x1),…,h(xn )) gis symmetric if      is symmetric



Construct a Symmetric Function

simple symmetric function

h

g

Observe:

f (x1, x2,…, xn ) = γ ! g(h(x1),…,h(xn )) gis symmetric if      is symmetric

(1,2,3)

(1,1,1)

(2,3,2)
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Construct a Symmetric Function

simple symmetric function

PointNet (vanilla)

h

g γ

Observe:

f (x1, x2,…, xn ) = γ ! g(h(x1),…,h(xn )) is symmetric if      is symmetricg

(1,2,3)

(1,1,1)

(2,3,2)

(2,3,4)



Q: What Symmetric Functions Can Be Constructed 
by PointNet?

PointNet 
(vanilla)

Symmetric functions



Universal Approximation Theorem

PointNet (vanilla)S ⊆ !d ,

• Can approximate any “continuous” functions over sets 
• “Continuous”: A function value would change by little if 

the point positions vary by little



Interpretation to “First Layer” Output
• Think of each dimension as a “binary” variable (the truth is a soft 

version)
• It encodes whether the point is in a certain spatial region
• The shape of the spatial region is learned

3D voxels of irregular boundaries!

x 
y 
z

h …

hi ( ⃗x ) : ℝ 3→ ℝ



Salient points are discovered!

Salient Points: Points with Non-Zero 
Gradient w.r.t. Positions



Hierarchical feature learning
 Multiple levels of abstraction

Limitations of PointNet

3D CNN (Wu et al.) PointNet (vanilla) (Qi et al.)

Global feature learning
Either one point or all points

• No local context for each point!
• Global feature depends on absolute coordinate. Hard to 

generalize to unseen scene configurations!



Points in Metric Space

• Learn “kernels” in 3D space and conduct convolution

• Kernels have compact spatial support

• For convolution, we need to find neighboring points

• Possible strategies for range query
• Ball query (results in more stable features)
• k-NN query (faster)



PointNet v2.0: Multi-Scale PointNet

N points in 
(x,y)

N1 points in 
(x,y,f)

N2 points in 
(x,y,f’)

Repeat 
• Sample anchor points 
• Find neighborhood of anchor points 
• Apply PointNet in each neighborhood to mimic convolution



Point Convolution As Graph Convolution
• Points -> Nodes
• Neighborhood -> Edges
• Graph CNN for point cloud processing

Wang et al., “Dynamic Graph CNN for Learning on Point Clouds”, 
Transactions on Graphics, 2019

Liu et al., “Relation-Shape Convolutional Neural Network for Point 
Cloud Analysis”, CVPR 2019



Agenda

• 3D Classification

• 3D Reconstruction



• It is possible to generate a set (permutation invariant)

From Single Image to Point Cloud

Fan et al., “A Point Set Generation Network for 3D Object 
Reconstruction from a Single Image”, CVPR 2017

Deep Neural 
Network

Predicted set

Point Set

Distance

Groundtruth point cloud
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