
Review of Neural Networks

CSE 152: Computer Vision
Hao Su



Q1: Difference between “Neural Networks” 
and “Convolutional Neural Networks”



Neural Networks

• A universal function approximator by 
composing multiple layers 

• Interleaved linear layers and non-linear layers 
(e.g., ReLU) 

• A general concept 



Fully-Connect Network
• Also known as “multilayer perceptron” (MLP) 
• Every neuron in one layer is connected with every 

neuron in the next layer 

• In our homework, we denote by mlp( , , …, ), 
where  is the number of neurons in the -th layer.

n1 n2 nk
ni i



In pytorch:
class MLP(nn.Module):
    def __init__(self):
        super(MLP, self).__init__()
        self.layers = nn.Sequential(
            nn.Linear(784, 100),
            nn.ReLU(),
            nn.Linear(100, 10)
        )
        
    def forward(self, x):
        # convert tensor (128, 1, 28, 28) --> (128, 1*28*28)
        x = x.view(x.size(0), -1)
        x = self.layers(x)
        return x



Convolutional Neural Network
• The next layer is obtained by applying a linear 

filter and some non-linear operation (e.g., max 
pooling, ReLU)

“Lenet”



Convolutional Neural Network
• where parameters are stored: in convolutional 

kernels and bias 
• where data is stored: in feature maps



In pytorch
class LeNet5(nn.Module): 

    def __init__(self, n_classes): 
        super(LeNet5, self).__init__() 
         
        self.feature_extractor = nn.Sequential(             
            nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1), 
            nn.Tanh(), 
            nn.AvgPool2d(kernel_size=2), 
            nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1), 
            nn.Tanh(), 
            nn.AvgPool2d(kernel_size=2), 
            nn.Conv2d(in_channels=16, out_channels=120, kernel_size=5, stride=1), 
            nn.Tanh() 
        ) 

        self.classifier = nn.Sequential( 
            nn.Linear(in_features=120, out_features=84), 
            nn.Tanh(), 
            nn.Linear(in_features=84, out_features=n_classes), 
        ) 

    def forward(self, x): 
        x = self.feature_extractor(x) 
        x = torch.flatten(x, 1) 
        logits = self.classifier(x) 
        probs = F.softmax(logits, dim=1) 
        return logits, probs



How to set hyper-parameters?
• Hyper-parameters: parameters not learned by 

the network but set by you. 
• kernel size, stride, number of output channels, 

learning rate, optimizer, … 
• Some tricks that might be useful: http://

karpathy.github.io/2019/04/25/recipe/

http://karpathy.github.io/2019/04/25/recipe/
http://karpathy.github.io/2019/04/25/recipe/
http://karpathy.github.io/2019/04/25/recipe/


How to set hyper-parameters?
• Best practice: Start from classical networks, 

and adjust according to feedback.  
• Classical networks are distilled from 

experiments in many thousand papers that 
have burned many millions of dollars. 

• LeNet, AlexNet, ResNet, DenseNet, PointNet, 
SparseConvNet, …



Q2: Back-propagation, Gradient 
descent, Connection with Networks



• Parameters: all to be learned by gradient 
descent: kernel weights, bias, any other 
unknowns in layers 

• Denoted by  when we formulate optimization 
problem by convention

θ



• We use stochastic gradient descent to 
minimize the loss 

• To compute gradient, we do “back-
propagation”: 

• A network is , where 
 is the -th layer, with parameters  

• To compute gradient by chain rule, we have 

• Product of matrices

y = fn( fn−1(⋯f1(x)…))
fi i θi

minimize L(θ)

∂fn
∂fn−1

∂fn−1

∂fn−2
⋯

∂fi
∂θi



26/59

Outline

I Vectors and Matrices
I Basic matrix operations
I Determinants, norms, trace
I Special matrices

I Transformation Matrices
I Homogeneous matrices
I Translation

I Matrix inverse

I Matrix rank



27/59

Transformation

I Matrices can be used to transform vectors in useful ways, through
multiplication: x 0 = Ax

I Simplest is scaling:

sx 0
0 sy

�
⇥

x
y

�
=


sxx
syy

�

(Verify by yourself that the matrix multiplication works out this way)



28/59

Rotation (2D case)

Counter-clockwise rotation by an angle ✓

x 0 = cos ✓x � sin ✓y

y 0 = cos ✓y + sin ✓x


x 0

y 0

�
=


cos ✓ � sin ✓
sin ✓ cos ✓

� 
x
y

�

P 0 = RP



29/59

Transformation Matrices

I Multiple transformation matrices can be used to transform a point:

p0 = R2R1Sp

The e↵ect of this is to apply their transformations one after the
other, from right to left In the example above, the result is
(R2(R1(Sp))) The result is exactly the same if we multiply the
matrices first, to form a single transformation matrix: p0(R2R1S)p



30/59

Transformation Matrices

I Multiple transformation matrices can be used to transform a point:

p0 = R2R1Sp

I The e↵ect of this is to apply their transformations one after the
other, from right to left

In the example above, the result is

(R2(R1(Sp)))

The result is exactly the same if we multiply the matrices first, to
form a single transformation matrix: p0(R2R1S)p



31/59

Transformation Matrices

I Multiple transformation matrices can be used to transform a point:

p0 = R2R1Sp

I The e↵ect of this is to apply their transformations one after the
other, from right to left

I In the example above, the result is

(R2(R1(Sp)))

The result is exactly the same if we multiply the matrices first, to
form a single transformation matrix:

p0(R2R1S)p



33/59

Homogeneous System

I In general, a matrix multiplication lets us linearly combine
components of a vector


a b
c d

�
⇥

x
y

�
=


ax + by
cx + dy

�

I This is su�cient for scale, rotate, skew transformations
I But notice, we cannot add a constant! :(



34/59

Homogeneous System

I The (somewhat hacky) solution? Stick a “1” at the end of every
vector: 2

4
a b c
d e f
0 0 1

3

5⇥

2

4
x
y
1

3

5 =

2

4
ax + by + c
dx + ey + f

1

3

5

I Now we can rotate, scale, and skew like before, AND translate (note
how the multiplication works out, above)

I This is called “homogeneous coordinates”



35/59

Homogeneous System

I In homogeneous coordinates, the multiplication works out so the
rightmost column of the matrix is a vector that gets added

2

4
a b c
d e f
0 0 1

3

5⇥

2

4
x
y
1

3

5 =

2

4
ax + by + c
dx + ey + f

1

3

5

I Generally, a homogeneous transformation matrix will have a bottom
row of [001], so that the result has a “1” at the bottom, too.



36/59

Homogeneous System

I One more thing we might want: to divide the result by something:
I Matrix multiplication cannot actually divide
I So, by convention, in homogeneous coordinates, we’ll divide the

result by its last coordinate after doing a matrix multiplication
2

4
x
y
7

3

5 )

2

4
x/7
y/7
1

3

5



37/59

2D Transformation using Homogeneous Coordinates



38/59

2D Transformation using Homogeneous Coordinates



39/59

Scaling



40/59

Scaling Equation



41/59

Scaling & Translating

P 00 = T · P 0 = T · (S · P) = T · S · P



42/59

Scaling & Translating

P 00 = T · S · P =

2

4
1 0 tx
0 1 ty
0 0 1

3

5 ·

2

4
sx 0 0
0 sy 0
0 0 1

3

5

2

4
x
y
1

3

5 =

=

2

4
sx 0 tx
0 sy ty
0 0 1

3

5

2

4
x
y
1

3

5 =

2

4
sxx + tx
syy + ty

1

3

5 =


S t
0 1

�2

4
x
y
1

3

5



50/59

Scaling+Rotation+Translation

P 0 = (T R S) P

P 0 = T · R · S · P =

2

4
1 0 tx
0 1 ty
0 0 1

3

5

2

4
cos ✓ � sin ✓ 0
sin ✓ cos ✓ 0
0 0 1

3

5

2

4
sx 0 0
0 sy 0
0 0 1

3

5

2

4
x
y
1

3

5 =

=

2

4
cos ✓ � sin ✓ tx
sin ✓ cos ✓ ty
0 0 1

3

5

2

4
sx 0 0
0 sy 0
0 0 1

3

5

2

4
x
y
1

3

5 =

=


R t
0 1

� 
S 0
0 1

�2

4
x
y
1

3

5 =


RS t
0 1

�2

4
x
y
1

3

5

Hao Su



Lecture 11: Camera Models

CSE 152: Computer Vision
Hao Su

Credit: CS231a, Stanford, Silvio Savarese



Agenda
• Pinhole cameras
• Cameras & lenses
• The geometry of pinhole cameras



Agenda
• Pinhole cameras
• Cameras & lenses
• The geometry of pinhole cameras



Pinhole camera

f

f = focal length
o = aperture = pinhole = center of the camera

o



ï

ï 
í y
ïî
y'= f z

z
ìx'= f x

Pinhole camera

Derived using similar triangles

[Eq. 1]

f



O

P = [x, z]

P’=[x’, f ]

f x
f z
=

x¢
i

k

Pinhole camera

[Eq. 2]

f



Kate lazuka ©

Is the size of the aperture
important?

Pinhole camera



Shrinking  
aperture  

size

Adding lenses!
-What happens if the aperture is too small?

-Less light passes through



Agenda
• Pinhole cameras
• Cameras & lenses
• The geometry of pinhole cameras



Cameras & Lenses

• A lens focuses light onto the film

image
P

P’



focal point

f

• A lens focuses light onto the film
– All rays parallel to the optical (or principal) axis converge to  one 

point (the focal point) on a plane located at the focal  length f from 
the center of the lens.

– Rays passing through the center are not deviated

Cameras & Lenses



Pin cushion

Barrel (fisheye lens)

Issues with lenses: Radial Distortion
– Deviations are most noticeable for rays that pass through  the 

edge of the lens

No distortion

Image magnification decreases  with 
distance from the optical axis



Agenda
• Pinhole cameras
• Cameras & lenses
• The geometry of pinhole cameras
– Intrinsic
– Extrinsic



Pinhole camera

f = focal length
o = center of the camera

Â 3®Â2
ï

ï
í y
ïî
y'= f z

z
ìx'= f x



From retina plane to images

Pixels, bottom-left coordinate systems

Retina plane

Digital image



Coordinate systems

x

y

xc

yc

C’’=[cx, cy]
z zx y(x, y, z)® (f x + c , f y + c )

[Eq. 5]

1. Offset



Converting to pixels



x

y

xc

yc

C=[cx, cy]

z zx yP = (x, y, z)→P '= (α x +c , β y +c )

Is this projective transformation linear?

f

[Eq. 7]

• Is this a linear transformation?
No — division by z is nonlinear

• Can we express it in a matrix form?



Homogeneous coordinates

homogeneous image  
coordinates

homogeneous scene  
coordinates

• Converting back from homogeneous coordinates



Projective transformation in the  
homogenous coordinate system



Camera Skewness



World reference system

intrinsic extrinsic



The projective transformation



Properties of projective transformations
• Points project to points
• line project to lines, rays or degenerate into points
• Distant objects look smaller



Properties of Projection

• Angles are not preserved
• Parallel lines meet (except for 

horizontal lines)

Parallel lines in the world  
intersect in the image at a  
“vanishing point”



Horizon line (vanishing line)

• Angles are not preserved
• Parallel lines meet (except for 

horizontal lines)

Parallel lines in the world  
intersect in the image at a  
“vanishing point”



Horizon line (vanishing line)


	Lec13_review_nn
	L13
	L13_review
	Introduction

	Lec13_camera


