CSE 152: Computer Vision

Hao Su

Review of Neural Networks

Q1: Difference between “Neural Networks”
and “Convolutional Neural Networks”

Neural Networks

« A universal function approximator by
composing multiple layers

e Interleaved linear layers and non-linear layers
(e.g., RelLU)

« A general concept

Fully-Connect Network

o Also known as “multilayer perceptron” (MLP)

« Every neuron in one layer is connected with every
neuron in the next layer

e In our homework, we denote by mip(n,, n,, ...,n;),
where n; is the number of neurons in the i-th layer.

In pytorch:

class MLP(nn.Module):
def __init__(self):
super(MLP, self).__init__QO
self.layers = nn.Sequential(
nn.Linear(784, 100),
nn.ReLUQ),
nn.Linear(100, 10)

def forward(self, x):
convert tensor (128, 1, 28, 28) --> (128, 1*28%*28)
X = x.view(x.size(0), -1)
x = self.layers(x)
return x

Convolutional Neural Network

« The next layer is obtained by applying a linear
filter and some non-linear operation (e.g., max
pooling, RelLU)

o 124
: C3: 1, maps 16@10x10 Lenet
INEUT C1: feature maps S4: 1. maps 16@5x5
F2x32 S 52:f. maps 5 C5: layer gp. QUTPUT
6@14x14 120 o e

54 10

: ‘ |
| Full connectian | Gaussian connections

Canvelutions Subsampling Convelutions Subsampling Full connection Ranzato m

Convolutional Neural Network

« where parameters are stored: in convolutional
kernels and bias

« where data is stored: in feature maps

G331, maps 16E10x10

C1: feafure maps S4: 1, maps 16@5x5
ggi:lijg G@28x28 S2: f. maps S xCS: layer i QUTPUT
B@1 x4 120 FG: layer

54 10

: ' |
| Full connectian | Gaussian connections

Canvelutions Subsampling Convelutions Subsampling Full connection Ranzato m

In pytorch

class LeNet5(nn.Module):

def __init__ (self, n_classes):
super(LeNet5, self).__init_ ()

def

self.feature_extractor = nn.Sequential(

nn
nn

nn

nn.
nn.
nn.
nn.

)

.Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1),
.Tanh(),

nn.
.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1),

AvgPool2d(kernel_size=2),

Tanh(),

AvgPool2d(kernel_size=2),

Conv2d(in_channels=16, out_channels=120, kernel_size=5, stride=1),
Tanh()

self.classifier = nn.Sequential(

nn.
nn.
nn.

Linear(in_features=120, out_features=84),
Tanh(),
Linear(in_features=84, out_features=n_classes),

forward(self, x):
x = self.feature_extractor(x)
X = torch.flatten(x, 1)

logits
probs
return

= self.classifier(x)
F.softmax(logits, dim=1)
logits, probs

How to set hyper-parameters?

« Hyper-parameters: parameters not learned by
the network but set by you.

o kernel size, stride, number of output channels,
learning rate, optimizer, ...

« Some tricks that might be useful: http://
karpathy.github.io/2019/04/25/recipe/

http://karpathy.github.io/2019/04/25/recipe/
http://karpathy.github.io/2019/04/25/recipe/
http://karpathy.github.io/2019/04/25/recipe/

How to set hyper-parameters?

« Best practice: Start from classical networks,
and adjust according to feedback.

e Classical networks are distilled from
experiments in many thousand papers that
have burned many millions of dollars.

e LeNet, AlexNet, ResNet, DenseNet, PointNet,
SparseConvNet, ...

Q2: Back-propagation, Gradient
descent, Connection with Networks

3 G331 maps 16E1 010
INEUT % zg.:‘l?tare maps 541 maps 16@25x5

F2x32 S2:f. maps CS: layer pe.
GE@1dx14 120 A lg?ila

r QUTPLT
1® 10

: ‘ |
| Full connectian | Gaussian connections

Canvelutions Subsampling Convolutians Subsampling Full connection Ran zato 'i

« Parameters: all to be learned by gradient
descent: kernel weights, bias, any other
unknowns in layers

« Denoted by 8 when we formulate optimization
problem by convention

minimize L(60)
e We use stochastic gradient descent to
minimize the loss

« To compute gradient, we do “back-
propagation”:

« Anetworkisy =7 (f,_{(-f;(x)...)), where
f: is the i-th layer, with parameters 60,

« To compute gradient by chain rule, we have
Wy W1 I

o1 Uy 00,
e Product of matrices

Outline

v

Vectors and Matrices
» Basic matrix operations
» Determinants, norms, trace
» Special matrices

v

Transformation Matrices

» Homogeneous matrices
» Translation

v

Matrix inverse

v

Matrix rank

Transformation

> Matrices can be used to transform vectors in useful ways, through
multiplication: x’ = Ax

5ol b) -

(Verify by yourself that the matrix multiplication works out this way)

> Simplest is scaling:

Rotation (2D case)

Counter-clockwise rotation by an angle

x' = cosfx — sin Oy
P’ y' = cosfy + sin x

iy TRl

1% sinf cosf | |y

P' = RP

Transformation Matrices

» Multiple transformation matrices can be used to transform a point:

p' = RRiSp

Transformation Matrices

» Multiple transformation matrices can be used to transform a point:
p' = R:R1Sp

> The effect of this is to apply their transformations one after the
other, from right to left

Transformation Matrices

» Multiple transformation matrices can be used to transform a point:
p' = R:R1Sp

» The effect of this is to apply their transformations one after the
other, from right to left

> In the example above, the result is

(R2(R1(Sp)))

Homogeneous System

> In general, a matrix multiplication lets us linearly combine
components of a vector

s e

» This is sufficient for scale, rotate, skew transformations
> But notice, we cannot add a constant! :(

Homogeneous System

» The (somewhat hacky) solution? Stick a “1" at the end of every

vector:
a b c X ax+ by +c
d e flx|y|l=|dx+ey+f
0 0 1 1 1

» Now we can rotate, scale, and skew like before, AND translate (note
how the multiplication works out, above)

» This is called “homogeneous coordinates”

Homogeneous System

» In homogeneous coordinates, the multiplication works out so the
rightmost column of the matrix is a vector that gets added

a b c X ax+ by +c¢
d e flx|y|l=|dx+ey+f
0 01 1 1

» Generally, a homogeneous transformation matrix will have a bottom
row of [001], so that the result has a “1" at the bottom, too.

Homogeneous System

» One more thing we might want: to divide the result by something:
> Matrix multiplication cannot actually divide
> So, by convention, in homogeneous coordinates, we'll divide the
result by its last coordinate after doing a matrix multiplication

X x/7

y| = |y/7
7 1

2D Transformation using Homogeneous Coordinates

A P’

2D Transformation using Homogeneous Coordinates

P P=(x,y) > (xy])
vl t=(t,.t,) > (t,.1,.])

X | tx x+tx_

P'>|y+t,[=[0 1 ¢}
1| oo 1
I t
= -P=T-P

Scaling

v

PI

v

Scaling Equation

PI
SY ! P= (X, y) — P'= (SXX,SyY)
y %
| P =(x,y) = (x,3,])
o PEGxsy) o Gasy)
sx| |s, 0 Offx
S'" 0
Pols,y|=|0 5, 0fy|- ‘P=S-P
0 1
1 0 1 1

Scaling & Translating

. G

.~

v

P'=T.-PP=T.(5-P)=T-S-P

PII

Scaling & Translating

[y

Scaling+Rotation+Translation

PI
10
P=T-R-S-P=|01 ¢,
00

cosf) —sinf t,
= |sinf cosf t,

0 0 1

B 9] -

f

] [cos 0
0
Sy
0

=(TRS)P
—sinf 0
sinf cosﬂ 0
1

0f |x

0] |y| =

1| |1

t} X

y

1 1

Sx
0
0

oY o

= O O

|

=< X

Hao Su

CSE 152: Computer Vision

Hao Su

Lecture 11: Camera Models

Agenda

* Pinhole cameras
e Cameras & lenses

* The geometry of pinhole cameras

Agenda

e Pinhole cameras
e Cameras & lenses

* The geometry of pinhole cameras

Pinhole camera

-~

image
plane

N pinhole virtual

image

f = focal length
o = aperture = pinhole = center of the camera

Pinhole camera

X' { [Eq. 1]

Derived using similar triangles

Pinhole camera

Pinhole camera

s the size of the aperture
importante

object barrier film

Kate lazuka ©

Shrinking
aperture
Size

(0.6mm 0.35 mm

-What happens if the aperture is too small?

_Less light passes through Adding lenses!

Agenda

* Pinhole cameras
e Cameras & lenses
* The geometry of pinhole cameras

Cameras & Lenses

object lens image

e A lens focuses light onto the film

Cameras & Lenses

object lens film
— focal point
= .
f—

e A lens focuses light onto the film

— All rays parallel to the optical (or principal) axis converge to one

point (the focal point) on a plane located at the focal length f from
the center of the lens.

— Rays passing through the center are not deviated

Issues with lenses: Radial Distortion

— Deviations are most noticeable for rays that pass through the
edge of the lens

No distortion

Pin cushion

Image magnification decreases with
distance from the optical axis

Agenda

* Pinhole cameras
e Cameras & lenses

* The geometry of pinhole cameras
— Intrinsic

— Extrinsic

Pinhole camera

x'=f =
X : J ‘ 3 2
Py %P’:m y RN
z y y':f E
[Eq. 1] f = focal length

o = center of the camera

From retina plane to images

Retina plane

Digital image

Pixels, bottom-left coordinate systems

Coordinate systems

7 " 1. Offset

(X,y,2) > (f§+cx,fz+cy)
PS , XC Z y4

C''=[c,, ¢,] [Eq. 5]

Converting to pixels

, ~
/

1. Off set
vY Y 2. From metric to pixels
(x.y.2) = (K= e (12 re))
C=[c,, C),] Units: k,| : pixel/m Non-square Plxe|s

X f-m a,ﬂ:pixel

Is this projective transformation linear?

P=(x,y,z)—> P'=(x f—kcx, 3 Z+cy)

Z Z

[Eq. 7]

xc ¢ |sthis alinear transformation?

C=[cx, ¢

No — division by z is nonlinear

x ¢ Canwe expressitin a matrix form?

Homogeneous coordinates

E->H
o

(z,y) = | v
1

homogeneous image
coordinates

[2
(w,y,2) = | 7

e 1 —
homogeneous scene
coordinates

e Converting back from homogeneous coordinates

H->E

y | = (z/w,y/w)

= (z/w,y/w, z/w)

S N e 8

Projective transformation in the

homogenous coordinate system

ax+c.z o 0
P'=l Py+c,z |=| 0 p c
Z 0 O
Homogenous Euclidian
r"\ ' - N

l
Z

| %P'=((x£+cx,/3z+cy)

g

Camera Skewness

a -acotl c. 0 I X |
R4 4 P=|0 ,ﬁ c. O Y
sinf Y z
" 0 0 1 0 1

@ > . IL -

p C=[c, c,] x How many degree does K have?

S 5 degrees of freedom!

World reference system

ey
e
.
‘e
]
e
Y

d4x4

extrinsic

parameters

The projective transformation

R,T)

o ; /-—b Iw
/ f /p\ k

—
/)Ow

w

O \

P'3><1 = M3x4 Pw = K3><3[R T :| Pw4><1

3x4

How many degrees of freedom?
5+3+3=11!

Properties of projective transformations

* Points project to points
 line project to lines, rays or degenerate into points
e Distant objects look smaller

e
M‘.

- a2 T
TR R
. 5 ,}}S‘l a 3?3"-\‘ szlv,r 4 a

e o
I~ -
¥ i <

Properties of Projection

* Angles are not preserved Parallel lines in the world

- Parallel lines meet (except for intersect in the image at a
horizontal lines) “vanishing point”

Horizon line (vanishing line)

* Angles a_re not preserved Parallel lines in the world
- Parallel lines meet (except for intersect in the image at a
horizontal lines) “vanishing point”

|

v .

Horizon line (vanishing line)

horizon

	Lec13_review_nn
	L13
	L13_review
	Introduction

	Lec13_camera

