CSE 152: Computer Vision Hao Su

Lecture 15: Fundamental Matrix

Agenda

- Review: Epipolar Geometry
- Fundamental matrix
- Estimating F

Epipolar Geometry

- Baselines
- Epipoles: $\mathrm{e}_{1}, \mathrm{e}_{2}$
= intersections of baseline with image planes
= projections of the other camera center

Epipolar Geometry

- Baselines
- Epipolar plane
- Epipoles: $\mathrm{e}_{1}, \mathrm{e}_{2}$
= intersections of baseline with image planes
= projections of the other camera center

Epipolar Geometry

- Baselines
- Epipolar plane
- Epipoles: $\mathrm{e}_{1}, \mathrm{e}_{2}$
= intersections of baseline with image planes
= projections of the other camera center

Epipolar Geometry

- Baselines
- Epipolar plane
- Epipoles: $\mathrm{e}_{1}, \mathrm{e}_{2}$
= intersections of baseline with image planes
= projections of the other camera center

Epipolar Geometry

- Baselines
- Epipolar plane
- Epipoles: $\mathrm{e}_{1}, \mathrm{e}_{2}$
= intersections of baseline with image planes
= projections of the other camera center

Epipolar Geometry

so, a pixel corresponds to a line in the other view

a pixel corresponds to a ray a ray corresponds to a line in the other view

- Baselines
- Epipolar plane
- Epipoles: $\mathrm{e}_{1}, \mathrm{e}_{2}$
= intersections of baseline with image planes
= projections of the other camera center

Epipolar Geometry

- Baselines
- Epipolar plane
- Epipolar line
- Epipoles: e_{1}, e_{2}
= intersections of baseline with image planes
$=$ projections of the other camera center

Epipolar Geometry

All of the epipolar lines in an

- Baselines
- Epipolar plane
- Epipolar line
- Epipoles: e_{1}, e_{2}
= intersections of baseline with image planes
$=$ projections of the other camera center

Agenda

- Review: Epipolar Geometry
- Essential Matrix
- Fundamental matrix
- Estimating F

Cross Product as Matrix Multiplication

$$
\mathbf{a} \times \mathbf{b}=\left[\begin{array}{ccc}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right]=\left[\mathbf{a}_{x}\right] \mathbf{b}
$$

$$
\left[a_{\star}\right]=-\left[a_{\star}\right]^{T}
$$

"skew-symmetric matrix"
rank 2

Essential Matrix

- Assume p and q in \mathbb{R}^{3} are two points on the (virtual) image plane of two cameras
- Denoted by the pinhole frame coordinate in the corresponding cameras

Essential Matrix

- In camera 1 pinhole frame, 3D point \mathbf{X} is given by $\mathbf{X}_{1}=\lambda_{1} \mathbf{p}$

Essential Matrix

- In camera 1 pinhole frame, 3D point \mathbf{X} is given by $\mathbf{X}_{1}=\lambda_{1} \mathbf{p}$
- In camera 2 pinhole frame, 3D point \mathbf{X} is given by $\mathbf{X}_{2}=\lambda_{2} \mathbf{q}$

Essential Matrix

- In camera 1 pinhole frame, 3D point \mathbf{X} is given by $X^{1}=\lambda_{1} p^{1}$.
- In camera 2 pinhole frame, 3D point \mathbf{X} is given by $X^{2}=\lambda_{2} q^{2}$.
- Assume $[\mathbf{R}, \mathbf{t}]$ changes the coordinate in camera 2 to the coordinate in camera 1

$$
\begin{aligned}
X^{1} & =R X^{2}+t \\
\lambda_{1} p^{1} & =\lambda_{2} R q^{2}+t
\end{aligned}
$$

Essential Matrix

- We have: $\lambda_{1} p^{1}=\lambda_{2} R q^{2}+t$

Essential Matrix

- We have: $\lambda_{1} p^{1}=\lambda_{2} R q^{2}+t$
- Take cross-product with respect to t :

$$
\lambda_{1}[t]_{\times} p^{1}=\lambda_{2}[t]_{\times}\left(R q^{2}+t\right)
$$

Essential Matrix

- We have: $\lambda_{1} p^{1}=\lambda_{2} R q^{2}+t$
- Take cross-product with respect to t :

$$
\lambda_{1}[t]_{\times} p^{1}=\lambda_{2}[t]_{\times}\left(R q^{2}+t\right)
$$

Essential Matrix

- We have: $\lambda_{1} p^{1}=\lambda_{2} R q^{2}+t$
- Take cross-product with respect to t :

$$
\lambda_{1}[t]_{\times} p^{1}=\lambda_{2}[t]_{\times}\left(R q^{2}+t\right)
$$

- Take dot-product with respect to p^{1} :

$$
0=\lambda_{2}\left(p^{1}\right)^{T}[t]_{\times} R q^{2}
$$

Essential Matrix

- We have: $\left(p^{1}\right)^{T}[t]_{\times} R q^{2}=0$
- Define: $\quad \mathbf{E}=[\mathbf{t}]_{\times} \mathbf{R}$

$$
\begin{gathered}
\text { Essential matrix } \\
\operatorname{rank}(E)=2
\end{gathered}
$$

- Then, we have:

$$
\left(p^{1}\right)^{T} E q^{2}=0 \xrightarrow[\text { superscript }]{\text { omit }} \quad p^{T} E q=0
$$

Agenda

- Review: Epipolar Geometry
- Essential Matrix
- Fundamental matrix
- Estimating F

Fundamental Matrix

- Consider intrinsic camera matrices
- Then, \mathbf{p} and \mathbf{q} are in the pinhole frame and pixel counterparts are:

$$
\mathbf{p}^{\prime}=\mathbf{K}_{1} \mathbf{p} \quad \mathbf{q}^{\prime}=\mathbf{K}_{2} \mathbf{q}
$$

- Recall essential matrix constraint:

$$
p^{T} E q=0
$$

- Substituting, we have:

$$
\left(K_{1}^{-1} p^{\prime}\right)^{T} E\left(K_{2}^{-1} q^{\prime}\right)=0
$$

Fundamental Matrix

- Essential matrix constraint in pixel space: $\left(K_{1}^{-1} p^{\prime}\right)^{T} E\left(K_{2}^{-1} q^{\prime}\right)=0$.
- Rearranging: $p^{\prime T} K_{1}^{-T} E K_{2}^{-1} q^{\prime}=0$
- Define: $F=K_{1}^{-T} E K_{2}^{-1}$ Fundamental matrix $\operatorname{rank}(F)=2$
- Then, we have:

$$
p^{\prime T} F q^{\prime}=0
$$

Fundamental Matrix

Epipolar Constraint

$$
p_{1}^{T} \cdot F p_{2}=0
$$

- $w_{1}=F p_{2}$ defines an equation $w_{1}^{T} p_{1}=0$
- Note that, p_{1} is the corresponding point of p_{2} by the derivation of F
- So, $w_{1}=F p_{2}$ defines the epipolar line of p_{2}

Epipolar Constraint

$$
p_{1}^{T} \cdot F p_{2}=0
$$

- $\mathrm{w}_{1}=\mathrm{F} \mathrm{p}_{2}$ defines an equation $w_{1}^{T} p_{1}=0$, the epipolar line m_{1} of p_{2}
- $W_{2}=F^{\top} p_{1}$ defines an equation $w_{2}^{T} p_{2}=0$, the epipolar line m_{2} of p_{1}
- F is singular (rank two)
- $\mathrm{Fe}_{2}=0$ and $\mathrm{F}^{\top} \mathrm{e}_{1}=0$

- Suppose F is known
- No additional information about the scene and camera is given
- Given a point on left image, we can compute the corresponding epipolar line in the second image

Why F is useful?

- F captures information about the epipolar geometry of 2 views + camera parameters
- MORE IMPORTANTLY: F gives constraints on how the scene changes under view point transformation (without reconstructing the scene!)
- Powerful tool in:
- 3D reconstruction
- Multi-view object/scene matching

Agenda

- Review: Epipolar Geometry
- Essential Matrix
- Fundamental matrix
- Estimating F

Estimating F

Suppose we have a pair of corresponding points:
[Eq. 13] $\mathrm{p}^{\mathrm{T}} \mathrm{F} \mathrm{p}^{\prime}=0 \quad p=\left[\begin{array}{l}u \\ v \\ 1\end{array}\right] \quad p^{\prime}=\left[\begin{array}{c}u^{\prime} \\ v^{\prime} \\ 1\end{array}\right]$
$(u, v, 1)\left(\begin{array}{lll}F_{11} & F_{12} & F_{13} \\ F_{21} & F_{22} & F_{23} \\ F_{31} & F_{32} & F_{33}\end{array}\right)\left(\begin{array}{l}u^{\prime} \\ v^{\prime} \\ 1\end{array}\right)=0 \quad\left(\begin{array}{l}F_{11} \\ F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \\ F_{33}\end{array}\right)=0$
Let's take 8 corresponding points 14]

Estimating F

Estimating F

Estimating F

W

$$
\left(\begin{array}{lllllllll}
u_{1} u_{1}^{\prime} & u_{1} v_{1}^{\prime} & u_{1} & v_{1} u_{1}^{\prime} & v_{1} v_{1}^{\prime} & v_{1} & u_{1}^{\prime} & v_{1}^{\prime} & 1 \tag{Eqs.15}\\
u_{2} u_{2}^{\prime} & u_{2} v_{2}^{\prime} & u_{2} & v_{2} u_{2}^{\prime} & v_{2} v_{2}^{\prime} & v_{2} & u_{2}^{\prime} & v_{2}^{\prime} & 1 \\
u_{3} u_{3}^{\prime} & u_{3} v_{3}^{\prime} & u_{3} & v_{3} u_{3}^{\prime} & v_{3} v_{3}^{\prime} & v_{3} & u_{3}^{\prime} & v_{3}^{\prime} & 1 \\
u_{4} u_{4}^{\prime} & u_{4} v_{4}^{\prime} & u_{4} & v_{4} u_{4}^{\prime} & v_{4} v_{4}^{\prime} & v_{4} & u_{4}^{\prime} & v_{4}^{\prime} & 1 \\
u_{5} u_{5}^{\prime} & u_{5} v_{5}^{\prime} & u_{5} & v_{5} u_{5}^{\prime} & v_{5} v_{5}^{\prime} & v_{5} & u_{5}^{\prime} & v_{5}^{\prime} & 1 \\
u_{6} u_{6}^{\prime} & u_{6} v_{6}^{\prime} & u_{6} & v_{6} u_{6}^{\prime} & v_{6} v_{6}^{\prime} & v_{6} & u_{6}^{\prime} & v_{6}^{\prime} & 1 \\
u_{7} u_{7}^{\prime} & u_{7} v_{7}^{\prime} & u_{7} & v_{7} u_{7}^{{ }_{7}} & v_{7} v_{7}^{\prime} & v_{7} & u_{7}^{\prime} & v_{7}^{\prime} & 1 \\
u_{8} u_{8}^{\prime} & u_{8} v_{8}^{\prime} & u_{8} & v_{8} u_{8}^{\prime} & v_{8} v_{8}^{\prime} & v_{8} & u_{8}^{\prime} & v_{8}^{\prime} & 1
\end{array}\right.
$$

- Homogeneous system $\mathbf{W} \mathbf{f}=0$
- Rank $8 \rightarrow$ A non-zero solution exists (unique)
- If $\mathrm{N}>8 \rightarrow$ Lsq. solution by SVD! $\rightarrow \hat{\mathrm{F}}$

$$
\|f\|=1
$$

\hat{F} satisfies: $\mathrm{p}^{\mathrm{T}} \hat{\mathrm{F}} \mathrm{p}^{\prime}=0$

and estimated \hat{F} may have full rank $(\hat{\operatorname{det}} \hat{(F)} \neq 0)$
But remember: fundamental matrix is Rank2

Find F that minimizes $\|F-\hat{F}\|$ Frobenius norm (*)
Subject to $\operatorname{rank}(F)=2$
SVD (again!) can be used to solve this problem
(*) Sq. root of the sum of squares of all entries

Find F that minimizes $\|F-\hat{\mathrm{F}}\|$

 Frobenius norm (*)
Subject to $\operatorname{det}(F)=0$

[HZ] pag 281, chapter 11, "Computation of F"

$$
\begin{aligned}
& \text { Where: } \\
& U\left[\begin{array}{ccc}
s_{1} & 0 & 0 \\
0 & s_{2} & 0 \\
0 & 0 & s_{3}
\end{array}\right] V^{T}=\operatorname{SVD}(\hat{F})
\end{aligned}
$$

Problems with the 8-Point Algorithm

$$
W f=0,\|f\|=1
$$

Do you remember how to solve the problem?
Hint: Check your HW1 (by the SVD of W)

Mean errors: 10.0pixel 9.1pixel

