CSE 152: Computer Vision Hao Su

Lecture 16: Stereo Reconstruction

Agenda

- Estimating F from Correspondences
- RANSAC for F Estimation
- Multi-View 3D Reconstruction

Epipolar Constraint

$$
p_{1}^{T} \cdot F p_{2}=0
$$

- $\mathrm{w}_{1}=\mathrm{F} \mathrm{p}_{2}$ defines an equation $w_{1}^{T} p_{1}=0$, the epipolar line m_{1} of p_{2}
- $w_{2}=F^{\top} p_{1}$ defines an equation $w_{2}^{T} p_{2}=0$, the epipolar line m_{2} of p_{1}
- F is singular (rank two)
- $\mathrm{Fe}_{2}=0$ and $\mathrm{F}^{\top} \mathrm{e}_{1}=0$

Estimating F

Suppose we have a pair of corresponding points:
[Eq. 13] $\mathrm{p}^{\mathrm{T}} \mathrm{F} \mathrm{p}^{\prime}=0 \quad p=\left[\begin{array}{l}u \\ v \\ 1\end{array}\right] \quad p^{\prime}=\left[\begin{array}{c}u^{\prime} \\ v^{\prime} \\ 1\end{array}\right]$
$(u, v, 1)\left(\begin{array}{lll}F_{11} & F_{12} & F_{13} \\ F_{21} & F_{22} & F_{23} \\ F_{31} & F_{32} & F_{33}\end{array}\right)\left(\begin{array}{l}u^{\prime} \\ v^{\prime} \\ 1\end{array}\right)=0 \quad\left(\begin{array}{l}F_{11} \\ F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \\ F_{33}\end{array}\right)=0$
Let's take 8 corresponding points 14]

Estimating F

Estimating F

Estimating F

W

$$
\left(\begin{array}{lllllllll}
u_{1} u_{1}^{\prime} & u_{1} v_{1}^{\prime} & u_{1} & v_{1} u_{1}^{\prime} & v_{1} v_{1}^{\prime} & v_{1} & u_{1}^{\prime} & v_{1}^{\prime} & 1 \tag{Eqs.15}\\
u_{2} u_{2}^{\prime} & u_{2} v_{2}^{\prime} & u_{2} & v_{2} u_{2}^{\prime} & v_{2} v_{2}^{\prime} & v_{2} & u_{2}^{\prime} & v_{2}^{\prime} & 1 \\
u_{3} u_{3}^{\prime} & u_{3} v_{3}^{\prime} & u_{3} & v_{3} u_{3}^{\prime} & v_{3} v_{3}^{\prime} & v_{3} & u_{3}^{\prime} & v_{3}^{\prime} & 1 \\
u_{4} u_{4}^{\prime} & u_{4} v_{4}^{\prime} & u_{4} & v_{4} u_{4}^{\prime} & v_{4} v_{4}^{\prime} & v_{4} & u_{4}^{\prime} & v_{4}^{\prime} & 1 \\
u_{5} u_{5}^{\prime} & u_{5} v_{5}^{\prime} & u_{5} & v_{5} u_{5}^{\prime} & v_{5} v_{5}^{\prime} & v_{5} & u_{5}^{\prime} & v_{5}^{\prime} & 1 \\
u_{6} u_{6}^{\prime} & u_{6} v_{6}^{\prime} & u_{6} & v_{6} u_{6}^{\prime} & v_{6} v_{6}^{\prime} & v_{6} & u_{6}^{\prime} & v_{6}^{\prime} & 1 \\
u_{7} u_{7}^{\prime} & u_{7} v_{7}^{\prime} & u_{7} & v_{7} u_{7}^{\prime} & v_{7} v_{7}^{\prime} & v_{7} & u_{7}^{\prime} & v_{7}^{\prime} & 1 \\
u_{8} u_{8}^{\prime} & u_{8} v_{8}^{\prime} & u_{8} & v_{8} u_{8}^{\prime} & v_{8} v_{8}^{\prime} & v_{8} & u_{8}^{\prime} & v_{8}^{\prime} & 1
\end{array}\right.
$$

- Homogeneous system $\mathbf{W} \mathbf{f}=0$
- Rank $8 \rightarrow$ A non-zero solution exists (up to scale)
- If $\mathrm{N}>8 \rightarrow$ Lsq. solution by SVD! $\rightarrow \hat{\mathrm{F}}$

$$
\|\mathbf{f}\|=1
$$

Basic Flow of the 8-Point Algorithm

$$
W f=0,\|f\|=1
$$

Do you remember how to solve the problem?
Hint: Check your HW1 (by the SVD of W)
\hat{F} satisfies: $\mathrm{p}^{\mathrm{T}} \hat{\mathrm{F}} \mathrm{p}^{\prime}=0$
and estimated \hat{F} may have full rank $(\operatorname{det}(\hat{F}) \neq 0)$
But remember: fundamental matrix is Rank2

\hat{F} satisfies: $\mathrm{p}^{\mathrm{T}} \hat{\mathrm{F}} \mathrm{p}^{\prime}=0$

and estimated \hat{F} may have full rank $(\hat{\operatorname{det}} \hat{(F)} \neq 0)$
But remember: fundamental matrix is Rank2

Find F that minimizes $\|F-\hat{F}\|$ Frobenius norm (*)
Subject to $\operatorname{rank}(F)=2$
SVD (again!) can be used to solve this problem
(*) Sq. root of the sum of squares of all entries

Find F that minimizes $\|F-\hat{\mathrm{F}}\|$

 Frobenius norm (*)
Subject to $\operatorname{det}(F)=0$

[HZ] pag 281, chapter 11, "Computation of F"

$$
\begin{aligned}
& \text { Where: } \\
& U\left[\begin{array}{ccc}
s_{1} & 0 & 0 \\
0 & s_{2} & 0 \\
0 & 0 & s_{3}
\end{array}\right] V^{T}=\operatorname{SVD}(\hat{F})
\end{aligned}
$$

Mean errors: 10.0pixel 9.1pixel

Agenda

- Estimating F from Correspondences
- RANSAC for F Estimation
- Multi-View 3D Reconstruction

Possible Ways to Obtain Correspondences

- Human annotation
- expensive
- not real-time
- Automatic correspondence computation

When F is known:

- Suppose F is known

- No additional information about the scene and camera is given
- Given a point on left image, we can compute the corresponding epipolar line in the second image

When F is unknown:

- Simultaneous Correspondence and F Estimation
- With F, it is easier to compute correspondence
- With correspondence, we can estimate F
- A Chicken-or-Egg problem

Basic Pipeline: Feature detection

Detect features using, for example, SIFT [Lowe, IJCV 2004] or learning-based keypoint detector

Basic Pipeline: Feature Matching

Match features between each pair of images

VLFeat's 800 most confident matches among 10,000+ local features.

Basic Pipeline: Initial estimate of F (RANSAC)

Randomly choose some correspondences and estimate F

Basic Pipeline: Outlier removal (RANSAC)

Based on the estimated F, remove pairs with big errors

Basic Pipeline: Reestimate F (RANSAC)

Reestimate F using inliners

Basic Pipeline: Repeat the above steps (RANSAC)

for i in range(n):
randomly choose some pairs
repeat for m times:
based on the inliers, estimate F based on F, remove pairs with big errors

Keep only the matches at are "inliers" with respect to the "best" fundamental matrix

Agenda

- Estimating F from Correspondences
- RANSAC for F Estimation
- Multi-View 3D Reconstruction

Problem setup

- Known:
- Two views of the same scene
- Corresponding points between views
- Intrinsic camera matrices $\left(K_{1}, K_{2}\right)$, i.e., camera calibration has been done
- Fundamental matrix F
- Question: Point coordinates in 3D space

Problem Setup

Step I: Estimate (R,T) Between Cameras

$$
\begin{gathered}
\mathbf{x}_{1} \leftrightarrow \mathbf{x}_{2} \\
\mathbf{X}_{1}^{\top} \mathbf{F} \mathbf{X}_{2}=0
\end{gathered}
$$

Step I: Estimate (R,T) Between Cameras

- Get E from F:

$$
\begin{aligned}
& F=K_{1}^{-T} E K_{2}^{-1} \\
& E=K_{1}^{T} E K_{2}
\end{aligned}
$$

- Decompose E into skew-symmetric and rotation matrices:

$$
\mathbf{E}=[\mathbf{t}]_{\times} \mathbf{R}
$$

https://en.wikipedia.org/wiki/Essential matrix

Step II: Reprojection Error Minimization

- With $K_{i}, \mathrm{R}, \mathrm{t}$, we can compute the projection matrices for both cameras:

$$
\mathrm{P}^{\prime}=\mathrm{M}_{\mathrm{w}} \stackrel{\mathrm{~K}}{\substack{\text { Internal parameters } \\ \text { External parameters }}}
$$

- The projective projection equation:

$$
\int_{i} p_{i}=\left[\begin{array}{c}
u_{i} \\
v_{i}
\end{array}\right]=\left[\begin{array}{c}
\frac{\mathbf{m}_{1} \mathrm{P}_{\mathrm{i}}}{\mathbf{m}_{3} \mathrm{P}_{\mathrm{i}}} \\
\frac{\mathbf{m}_{2} \mathrm{P}_{\mathrm{i}}}{\mathbf{m}_{3} \mathrm{P}_{\mathrm{i}}}
\end{array}\right]
$$

$$
\mathrm{M}=\left[\begin{array}{l}
\mathbf{m}_{1} \\
\mathbf{m}_{2} \\
\mathbf{m}_{3}
\end{array}\right]
$$

A non-linear transformation, denoted by $p_{i}=f\left(P_{i}\right)$

Step II: Reprojection Error Minimization

- Minimize sum of squared reproduction errors:

- Optimized with non-linear least squares
- LM algorithm (Levenberg-Marquardt) is a popular choice

Large systems built on these steps

```
M,
Monocular SFM Using Adaptive Ground Plane Estimation
```

