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Goal of Video Understanding
• Given an input video, obtain an understanding 
• Involves: 

– Objects 
– Humans 
– Actions/events



Video
• A video is a sequence of frames captured 

over time
• A ‘function’ of space (x, y) and time (t)



Motion Cue is Important
Even “impoverished” motion data from videos 
can evoke a strong percept
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Motion Cue is Important

Experimental study of apparent behavior.  
Fritz Heider & Marianne Simmel. 1944 



Motion Applications: Segmentation of video

• Background subtraction
• Goal: separate the static background from the moving foreground



Motion Applications: Segmentation of video

• Background subtraction
• Shot boundary detection in edited video

• Goal: segment video into shots for summarization and browsing 
(each shot can be represented by a single keyframe in a user 
interface)



Motion Applications: Segmentation of video

• Background subtraction
• Shot boundary detection
• Motion segmentation

• Goal: Segment the video into multiple coherently moving objects



Motion Applications: Mosaicing for Panoramas

Compare small 
overlap for efficiency

Left to right sweep of video camera

Frame t t+1 t+3 t+5



Motion Applications: Mosaicing for Panoramas



Agenda
• Optical Flow Definition
• Optical Flow Estimation



Motion Field & Optical Flow Field
• Motion Field = Real world 3D motion 
• Optical Flow Field = Projection of the motion 

field onto the 2d image

3D motion vector

2D optical flow 
vector

( )vu,u =!

CCD

Slide adapted from Savarese.



https://www.youtube.com/watch?v=5rR_9YIcg_s



Zoom out Zoom in Pan right to left

Slide adapted from Savarese and Grauman.

Motion Field + Camera Motion



Figure from Michael Black, Ph.D. Thesis

Length of flow 
vectors inversely 
proportional to 
depth Z of 3d point

points closer to the camera move more 
quickly across the image plane

Motion Field + Camera Motion

Slide adapted from K. Grauman.



Apparent motion
• Optical flow differs from actual motion field: 

• (a) intensity remains constant, so that no motion is 
perceived; 

• (b) no object motion exists, however moving light 
source produces shading changes.
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Agenda
• Optical Flow Definition
• Optical Flow Estimation



Estimating Optical Flow

• Given two subsequent frames, estimate the apparent motion 
field u(x,y), v(x,y) between them

• Key assumptions
• Brightness constancy:  projection of the same point looks the 

same in every frame
• Small motion:  points do not move very far
• Spatial coherence: points move like their neighbors

I(x,y,t–1) I(x,y,t)
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Key Assumptions: Small Motions

* Slide from Michael Black, CS143 2003



Key Assumptions: Spatial Coherence 

* Slide from Michael Black, CS143 2003



Key Assumptions: Brightness Constancy

* Slide from Michael Black, CS143 2003



Optical Flow Constraints (grayscale images)

• Let’s look at these constraints more closely
• Brightness constancy constraint  (equation)

• Small motion:  (u and v are less than 1 pixel, or smoothly varying) 
Taylor series expansion of I:
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Optical Flow Equation
• Combining these two equations

(Short hand:  
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Optical Flow Equation
• Combining these two equations

In the limit as u and v go to zero, this becomes exact

Brightness constancy constraint equation
0x y tI u I v I+ + =

0 ,tI I u v= +∇ ⋅ < >

(Short hand:  

for t  or t+1)

𝐼𝑥 =
𝜕𝐼
𝜕𝑥

 



Filters Used to Find the Derivatives
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𝐼𝑥 𝐼𝑦 𝐼𝑡



How Does This Make Sense?

What do the static image gradients  
have to do with motion estimation?

Brightness constancy constraint equation
0x y tI u I v I+ + =



The Brightness Constancy Constraint

• How many equations and unknowns per pixel?
• One equation (this is a scalar equation!), two unknowns (u,v)

Can we use this equation to recover image motion (u,v) at each pixel?
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The Brightness Constancy Constraint

• How many equations and unknowns per pixel?

The component of the flow perpendicular to the gradient (i.e., parallel 
to the edge) cannot be measured

edge

(u,v)

(u’,v’)

gradient

(u+u’,v+v’)

If (u, v ) satisfies the equation,  
so does (u+u’, v+v’ ) if 

∇I ⋅ u' v'[ ]T = 0

Can we use this equation to recover image motion (u,v) at each pixel?
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• One equation (this is a scalar equation!), two unknowns (u,v)

0 ,tI I u v= +∇ ⋅ < >



The Barber Pole Illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

http://en.wikipedia.org/wiki/Barberpole_illusion


The Barber Pole Illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

http://en.wikipedia.org/wiki/Barberpole_illusion


Solving the Ambiguity…

• How to get more equations for a pixel?
• Spatial coherence constraint 
     Assume the pixel’s neighbors have the same (u,v)

   If we use a 5x5 window, that gives us 25 equations per pixel

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In 
Proceedings of the International Joint Conference on Artificial Intelligence, pp. 674–679, 1981.



Solving the Ambiguity…
• Least squares problem:



Matching Matches Across Images
• Overconstrained linear system

The summations are over all pixels in the K x K window

Least squares solution for d given by



Conditions for Solvability
Optimal (u, v) satisfies Lucas-Kanade equation

 When is this solvable?  What are good points to track? 
• ATA should be invertible  
• ATA should not be too small due to noise 

– eigenvalues λ1 and λ 2 of ATA should not be too small 
• ATA should be well-conditioned 

–  λ 1/ λ 2 should not be too large (λ 1 = larger eigenvalue) 

Criteria for Harris corner detector 



Lecture 17 -  Stanford University

Interpreting the eigenvalues

λ1

λ2

“Corner” 
λ1 and λ2 are large, 

 λ1 ~ λ2

λ1 and λ2 are small “Edge”  
λ1 >> λ2

“Edge”  
λ2 >> λ1

“Flat” 
region

Classification of image points using eigenvalues of the 
second moment matrix:

28-Nov-1737



Low Texture Region

– gradients have small magnitude
– small λ1, small λ2



Edge

– large gradients, all the same
– large λ1, small λ2



High Textured Region

– gradients are different, large magnitudes
– large λ1, large λ2



Errors in Lukas-Kanade
What are the potential causes of errors in this procedure?

• Suppose ATA is easily invertible
• Suppose there is not much noise in the image

• When our assumptions are violated (Taylor expansion fails)
– Brightness constancy is not satisfied
– The motion is not small
– A point does not move like its neighbors

• window size is too large
• what is the ideal window size?

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003


