CSE 152: Computer Vision Hao Su

Lecture 17: Motion Estimation

Goal of Video Understanding

- Given an input video, obtain an understanding
- Involves:
- Objects
- Humans
- Actions/events

Video

- A video is a sequence of frames captured over time
- A 'function' of space (x, y) and time (t)

Motion Cue is Important

Even "impoverished" motion data from videos can evoke a strong percept

Motion Cue is Important

Even "impoverished" motion data from videos can evoke a strong percept

Motion Cue is Important

Experimental study of apparent behavior.
Fritz Heider \& Marianne Simmel. 1944

Motion Applications: Segmentation of video

- Background subtraction
- Goal: separate the static background from the moving foreground

Motion Applications: Segmentation of video

- Background subtraction
- Shot boundary detection in edited video
- Goal: segment video into shots for summarization and browsing (each shot can be represented by a single keyframe in a user interface)

Motion Applications: Segmentation of video

- Background subtraction
- Shot boundary detection
- Motion segmentation
- Goal: Segment the video into multiple coherently moving objects

Motion Applications: Mosaicing for Panoramas

Left to right sweep of video camera

Frame t t+1 t+3 t+5

Compare small
overlap for efficiency

Motion Applications: Mosaicing for Panoramas

Agenda

- Optical Flow Definition
- Optical Flow Estimation

Motion Field \& Optical Flow Field

- Motion Field = Real world 3D motion
- Optical Flow Field = Projection of the motion field onto the 2d image

Motion Field + Camera Motion

Zoom out

Zoom in

Pan right to left

Motion Field + Camera Motion

Length of flow vectors inversely proportional to depth Z of 3d point

Figure 1.2: Two images taken from a helicopter flying through a canyon and the computed optical flow field.

Apparent motion

- Optical flow differs from actual motion field:
- (a) intensity remains constant, so that no motion is perceived;
- (b) no object motion exists, however moving light source produces shading changes.

Agenda

- Optical Flow Definition
- Optical Flow Estimation

Estimating Optical Flow

- Given two subsequent frames, estimate the apparent motion field $u(x, y), v(x, y)$ between them
- Key assumptions
- Brightness constancy: projection of the same point looks the same in every frame
- Small motion: points do not move very far
- Spatial coherence: points move like their neighbors

Key Assumptions: Small Motions

Assumption:
The image motion of a surface patch changes gradually over time.

Key Assumptions: Spatial Coherence

Assumption

* Neighboring points in the scene typically belong to the same surface and hence typically have similar motions.
* Since they also project to nearby points in the image, we expect spatial coherence in image flow.

Key Assumptions: Brightness Constancy

Assumption
Image measurements (e.g. brightness) in a small region remain the same although their location may change.

$$
I(x+u, y+v, t+1)=I(x, y, t)
$$

(assumption)

Optical Flow Constraints (grayscale images)

$$
I(x, y, t)
$$

$$
I(x, y, t+1)
$$

- Let's look at these constraints more closely
- Brightness constancy constraint (equation)

$$
I(x, y, t)=I(x+u, y+v, t+1)
$$

- Small motion: (u and v are less than 1 pixel, or smoothly varying) Taylor series expansion of I :

$$
\begin{aligned}
I(x+u, y+v) & =I(x, y)+\frac{\partial I}{\partial x} u+\frac{\partial I}{\partial y} v+[\text { higher order terms }] \\
& \approx I(x, y)+\frac{\partial I}{\partial x} u+\frac{\partial I}{\partial y} v
\end{aligned}
$$

Optical Flow Equation

- Combining these two equations

$$
0=I(x+u, y+v, t+1)-I(x, y, t)
$$

(Short hand: $I_{x}=\frac{\partial I}{\partial x}$ for t or $t+1$)

Optical Flow Equation

- Combining these two equations

$$
\begin{aligned}
0 & =I(x+u, y+v, t+1)-I(x, y, t) \\
& \approx I(x, y, t+1)+I_{x} u+I_{y} v-I(x, y, t) \\
& \approx[I(x, y, t+1)-I(x, y, t)]+I_{x} u+I_{y} v \\
& \approx I_{t}+I_{x} u+I_{y} v \\
& \approx I_{t}+\nabla I \cdot<u, v>
\end{aligned}
$$

Optical Flow Equation

- Combining these two equations

$$
\begin{array}{rlr}
0 & =I(x+u, y+v, t+1)-I(x, y, t) \\
& \approx I(x, y, t+1)+I_{x} u+I_{y} v-I(x, y, t) \quad \text { (Short hand: } I_{x}=\frac{\partial I}{\partial x} \\
& \left.\approx[I(x, y, t+1)-I(x, y, t)]+I_{x} u+I_{y} v \quad \text { for } t \text { or } t+1\right) \\
& \approx I_{t}+I_{x} u+I_{y} v \\
& \approx I_{t}+\nabla I \cdot\langle u, v>
\end{array}
$$

In the limit as u and v go to zero, this becomes exact

$$
0=I_{t}+\nabla I \cdot\langle u, v\rangle
$$

Brightness constancy constraint equation

$$
I_{x} u+I_{y} v+I_{t}=0
$$

Filters Used to Find the Derivatives

$$
\begin{array}{ccc}
{\left[\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right] \text { first image }} & {\left[\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right] \text { first image }} & {\left[\begin{array}{cc}
-1 & -1 \\
-1 & -1
\end{array}\right] \text { first image }} \\
{\left[\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right] \text { second image }} & {\left[\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right] \text { second image }} & {\left[\begin{array}{cc}
1 & 1 \\
1 & 1
\end{array}\right] \text { second image }} \\
& I_{x} & I_{y}
\end{array}
$$

How Does This Make Sense?

Brightness constancy constraint equation

$$
I_{x} u+I_{y} v+I_{t}=0
$$

What do the static image gradients have to do with motion estimation?

The Brightness Constancy Constraint

Can we use this equation to recover image motion (u, v) at each pixel?

$$
0=I_{t}+\nabla I \cdot<u, v>
$$

- How many equations and unknowns per pixel?
- One equation (this is a scalar equation!), two unknowns (u,v)

The Brightness Constancy Constraint

Can we use this equation to recover image motion (u, v) at each pixel?

$$
0=I_{t}+\nabla I \cdot<u, v>
$$

- How many equations and unknowns per pixel?
- One equation (this is a scalar equation!), two unknowns (u,v)

The component of the flow perpendicular to the gradient (i.e., parallel to the edge) cannot be measured

If (u, v) satisfies the equation, so does ($\left.u+u^{\prime}, v+v^{\prime}\right)$ if

$$
\nabla \| \cdot\left[\begin{array}{ll}
u^{\prime} & v^{\prime}
\end{array}\right]^{T}=0
$$

The Barber Pole Illusion

The Barber Pole Illusion

http://en.wikipedia.org/wiki/Barberpole illusion

Solving the Ambiguity...

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In Proceedings of the International Joint Conference on Artificial Intelligence, pp. 674-679, 1981.

- How to get more equations for a pixel?
- Spatial coherence constraint

Assume the pixel's neighbors have the same (u,v)
If we use a 5×5 window, that gives us 25 equations per pixel

$$
\begin{gathered}
0=I_{t}\left(\mathbf{p}_{\mathbf{i}}\right)+\nabla I\left(\mathbf{p}_{\mathbf{i}}\right) \cdot[u v] \\
{\left[\begin{array}{cc}
I_{x}\left(\mathbf{p}_{1}\right) & I_{y}\left(\mathbf{p}_{1}\right) \\
I_{x}\left(\mathbf{p}_{2}\right) & I_{y}\left(\mathbf{p}_{2}\right) \\
\vdots & \vdots \\
I_{x}\left(\mathbf{p}_{25}\right) & I_{y}\left(\mathbf{p}_{25}\right)
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=-\left[\begin{array}{c}
I_{t}\left(\mathbf{p}_{1}\right) \\
I_{t}\left(\mathbf{p}_{2}\right) \\
\vdots \\
I_{t}\left(\mathbf{p}_{25}\right)
\end{array}\right]}
\end{gathered}
$$

Solving the Ambiguity...

- Least squares problem:

$$
\left[\begin{array}{cc}
I_{x}\left(\mathrm{p}_{1}\right) & I_{y}\left(\mathrm{p}_{1}\right) \\
I_{x}\left(\mathrm{p}_{2}\right) & I_{y}\left(\mathrm{p}_{2}\right) \\
\vdots & \vdots \\
I_{x}\left(\mathrm{p}_{25}\right) & I_{y}\left(\mathrm{p}_{25}\right)
\end{array}\right]\left[\begin{array}{c}
u \\
v
\end{array}\right]=-\left[\begin{array}{c}
I_{t}\left(\mathrm{p}_{1}\right) \\
I_{t}\left(\mathrm{p}_{2}\right) \\
\vdots \\
I_{t}\left(\mathrm{p}_{25}\right)
\end{array}\right] \underset{25 \times 2}{A} \underset{\underset{2 \times 1}{ }=b}{25 \times 1}
$$

Matching Matches Across Images

- Overconstrained linear system

$$
\left[\begin{array}{cc}
I_{x}\left(\mathbf{p}_{1}\right) & I_{y}\left(\mathbf{p}_{1}\right) \\
I_{x}\left(\mathrm{p}_{2}\right) & I_{y}\left(\mathrm{p}_{2}\right) \\
\vdots & \vdots \\
I_{x}\left(\mathbf{p}_{\mathbf{2 5}}\right) & I_{y}\left(\mathbf{p}_{\mathbf{2 5}}\right)
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=-\left[\begin{array}{c}
I_{t}\left(\mathrm{p}_{1}\right) \\
I_{t}\left(\mathrm{p}_{2}\right) \\
\vdots \\
I_{t}\left(\mathbf{p}_{25}\right)
\end{array}\right] \quad \begin{array}{cc}
A & d=b \\
25 \times 2 & 2 \times 1 \\
25 \times 1
\end{array}
$$

Least squares solution for d given by $\left(A^{T} A\right) d=A^{T} b$

$$
\begin{array}{rr}
{\left[\begin{array}{cc}
\sum I_{x} I_{x} & \sum I_{x} I_{y} \\
\sum I_{x} I_{y} & \sum I_{y} I_{y}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=-} & {\left[\begin{array}{c}
\sum I_{x} I_{t} \\
\sum I_{y} I_{t}
\end{array}\right]} \\
A^{T} A & A^{T} b
\end{array}
$$

The summations are over all pixels in the $\mathrm{K} \times \mathrm{K}$ window

Conditions for Solvability

Optimal (u, v) satisfies Lucas-Kanade equation

$$
\begin{array}{cc}
{\left[\begin{array}{cc}
\sum I_{x} I_{x} & \sum I_{x} I_{y} \\
\sum I_{x} I_{y} & \sum I_{y} I_{y}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=-\left[\begin{array}{c}
\sum I_{x} I_{t} \\
\sum I_{y} I_{t}
\end{array}\right]} \\
A^{T} A & A^{T} b
\end{array}
$$

When is this solvable? What are good points to track?

- ATA should be invertible
- A $^{\text {TA }}$ should not be too small due to noise
- eigenvalues λ_{1} and λ_{2} of $A^{\top} A$ should not be too small
- $A^{\top} A$ should be well-conditioned
$-\lambda_{1} / \lambda_{2}$ should not be too large ($\lambda_{1}=$ larger eigenvalue)

Criteria for Harris corner detector

Interpreting the eigenvalues

Classification of image points using eigenvalues of the second moment matrix:

Low Texture Region

$\sum \nabla I(\nabla I)^{T}$

- gradients have small magnitude

- small λ_{1}, small λ_{2}

Edge

High Textured Region

- gradients are different, large magnitudes
- large λ_{1}, large λ_{2}

Errors in Lukas-Kanade

What are the potential causes of errors in this procedure?

- Suppose $A^{\top} A$ is easily invertible
- Suppose there is not much noise in the image
- When our assumptions are violated (Taylor expansion fails)
- Brightness constancy is not satisfied
- The motion is not small
- A point does not move like its neighbors
- window size is too large
- what is the ideal window size?

