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Motion Field & Optical Flow Field
• Motion Field = Real world 3D motion 

• Optical Flow Field = Projection of the motion 

field onto the 2d image

3D motion vector

2D optical flow 
vector

( )vu,u =!

CCD

Slide adapted from Savarese.



Apparent Motion
• Optical flow differs from actual motion field: 


• (a) intensity remains constant, so that no motion is 
perceived; 


• (b) no object motion exists, however moving light 
source produces shading changes.
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Estimating Optical Flow

• Given two subsequent frames, estimate the apparent motion 
field u(x,y), v(x,y) between them


• Key assumptions

• Brightness constancy:  projection of the same point looks the 

same in every frame

• Small motion:  points do not move very far

• Spatial coherence: points move like their neighbors

I(x,y,t–1) I(x,y,t)
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Optical Flow Constraints (grayscale images)

• Let’s look at these constraints more closely
• Brightness constancy constraint  (equation)

• Small motion:  (u and v are less than 1 pixel, or smoothly varying) 
Taylor series expansion of I:

( , , )I x y t ( , , 1)I x y t +

( , , ) ( , , 1)I x y t I x u y v t= + + +

I(x + u, y + v, t + 1) = I(x, y, t) +
∂I
∂x

u +
∂I
∂y

v +
∂I
∂t

+ o(1)



I(x + u, y + v, t + 1) = I(x, y, t) +
∂I
∂x

u +
∂I
∂y

v +
∂I
∂t

+ o(1)

0x y tI u I v I+ + =

Brightness Constancy Constraint Equation



The Brightness Constancy Constraint

• How many equations and unknowns per pixel?
• One equation (this is a scalar equation!), two unknowns (u,v)

Can we use this equation to recover image motion (u,v) at each pixel?
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The Brightness Constancy Constraint

• How many equations and unknowns per pixel?

The component of the flow perpendicular to the gradient (i.e., parallel 
to the edge) cannot be measured

edge

(u,v)

(u’,v’)

gradient

(u+u’,v+v’)

If (u, v ) satisfies the equation,  
so does (u+u’, v+v’ ) if 

∇I ⋅ u' v'[ ]T = 0

Can we use this equation to recover image motion (u,v) at each pixel?
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• One equation (this is a scalar equation!), two unknowns (u,v)

0 ,tI I u v= +∇ ⋅ < >



The Barber Pole Illusion

http://en.wikipedia.org/wiki/Barberpole_illusion
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Solving the Ambiguity…

• How to get more equations for a pixel?

• Spatial coherence constraint 

     Assume the pixel’s neighbors have the same (u,v)


   If we use a 5x5 window, that gives us 25 equations per pixel

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In 
Proceedings of the International Joint Conference on Artificial Intelligence, pp. 674–679, 1981.



Solving the Ambiguity…
• Least squares problem:



Matching Matches Across Images
• Overconstrained linear system

Least squares solution for d given by



Matching Matches Across Images
• Overconstrained linear system

The summations are over all pixels in the K x K window

Least squares solution for d given by

A =
(∇I(p1))T

⋮
(∇I(pn)T

⇒ AT A = ∑
i

∇I(pi)(∇I(pi))T = [
∑ IxIx ∑ IxIy

∑ IxIy ∑ IyIy]



Conditions for Solvability
Optimal (u, v) satisfies Lucas-Kanade equation

	 When is this solvable?  What are good points to track?

• ATA should be invertible

• ATA should not be too small due to noise


– eigenvalues λ1 and λ 2 of ATA should not be too small

• ATA should be well-conditioned


–  λ 1/ λ 2 should not be too large (λ 1 = larger eigenvalue)




Link Linear Algebra with Pixels

A =
(∇I(p1))T

⋮
(∇I(pn))T

=
aT

1
⋮
aT

n

∀w ∈ ℝ2, we have wT(AT A)w = ∥Aw∥2 = ∑ (aT
i w)2

Let

λ1 = λmax(AT A) λ2 = λmin(AT A)



Low Texture Region

Gradients ( ) have small magnitudeai

A =
(∇I(p1))T

⋮
(∇I(pn))T

=
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1
⋮
aT

n



Low Texture Region

A =
(∇I(p1))T

⋮
(∇I(pn))T

=
aT

1
⋮
aT

n

wT(AT A)w = ∑ (aT
i w)2

small for any w with ∥w∥2 = 1

maximize
∥w∥2=1

wT(AT A)w = λ1Because

λ1 and λ2 are both small

(Recall 8-point algo.

 and HW1)

Gradients ( ) have small 
magnitude

ai



Edge

large gradients, all the same



Edge

A =
(∇I(p1))T

⋮
(∇I(pn))T

=
aT

1
⋮
aT

n

wT(AT A)w = ∑ (aT
i w)2

big for w parallel to gradients

maximize
∥w∥2=1

wT(AT A)w = λ1, λ1 is bigBecause

Large gradients ( ), all the sameai

small for w orthogonal to gradients

minimize
∥w∥2=1

wT(AT A)w = λ2, λ2 is smallBecause



High Textured Region

gradients are different, 

large magnitudes



High Textured Region gradients ( ) are different, 

large magnitudes

ai

A =
(∇I(p1))T

⋮
(∇I(pn))T

=
aT

1
⋮
aT

n

wT(AT A)w = ∑ (aT
i w)2

maximize
∥w∥2=1

wT(AT A)w = λ1, λ1 is bigBecause

for any w there are some a′￼is with signficant component along it

minimize
∥w∥2=1

wT(AT A)w = λ2, λ2 is also bigBecause

In other words, this quantity is never small



Interpreting the Eigenvalues

λ1

λ2

“Textured area” 
λ1 and λ2 are large, 

 λ1 ~ λ2

λ1 and λ2 are small “Edge”  
λ1 >> λ2

“Edge”  
λ2 >> λ1

“Flat” 
region

Classification of image points using eigenvalues of AT A
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“Corner” 
C > 0

“Edge”  
C < 0

“Edge”  
C < 0

“Flat” 
region

|C| small

λ1

λ22
2121 )( λλαλλ +−=C

Cornerness

α: constant (0.04 to 0.06)

Harris Corner Detector



Harris Corner Detector



Harris Corner Detector



Errors in Lukas-Kanade
• What are the potential causes of errors in this procedure?


– Suppose ATA is easily invertible

– Suppose there is not much noise in the image


• When our assumptions are violated (Taylor expansion fails)

– Brightness constancy is not satisfied

– The motion is not small
– A point does not move like its neighbors


• window size is too large

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003


