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Linear Algebra Primer
(cont’)

Note: the slides are based on CS131 (Juan Carlos et al) and EE263 (by Stephen Boyd et al)
at Stanford. Reorganized, revised, and typed by Hao Su
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I Spectral theory
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I Pseudo-inverse

I Matrix Calculus
I Gradient
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Vector Spaces

a vector space or linear space (over the reals) consists of

I a set V
I a vector sum +: V × V → V
I a scalar multiplication: R× V → V
I a distinguished element 0 ∈ V

which satisfy a list of properties
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Vector Space Axioms

I x + y = y + x ,∀x , y ∈ V
I (x + y) + z = x + (y + z),∀x , y , z ∈ V
I 0 + x = x ,x ∈ V
I ∀x ∈ V ∃(−x) ∈ V s.t. x + (−x) = 0

I (αβ)x = α(βx), ∀α, β ∈ R ∀x ∈ V
I α(x + y) = αx +αy , ∀α ∈ R ∀x , y ∈ V
I (α+β)x = αx +βx , ∀α, β ∈ R ∀x ∈ V
I 1x = x , ∀x ∈ V

+ is commutative

+ is associative

0 is additive identity

existence of additive inverse

scalar mult. is associative

right distributive rule

left distributive rule

1 is mult. identity
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Examples

I V1 = Rn, with standard (componentwise) vector addition and scalar
multiplication

I V2 = {0} (where 0 ∈ Rn)

I V3 = span(v1, v2, . . . , vk) where
span(v1, v2, . . . , vk) = {α1v1 + · · ·+ αkvk |αi ∈ R}

and v1, . . . , vk ∈ Rn
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Subspaces

I a subspace of a vector space is a subset of a vector space which is
itself a vector space

I roughly speaking, a subspace is closed under vector addition and
scalar multiplication

I examples V1,V3,V3 above are subspaces of Rn
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Vector Spaces of Functions

I V4 = {x : R+ → Rn|x is differentiable}, where vector sum is sum of
functions:

(x + z)(t) = x(t) + z(t)]

and scalar multiplication is defined by

(αx)(t) = αx(t)

(a point in V4 is a trajectory in Rn)

I V5 = {x ∈ V4|ẋ = Ax}
(points in V5 are trajectories of the linear system ẋ = Ax)

I V5 is a subspace of V4
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Basis and Dimension

set of vectors {v1, vk , . . . , vk} is called a basis for a vector space V if

V = span(v1, v2, . . . , vk)
and

{v1, v2, . . . , vk} is independent

I equivalently, every v ∈ V can be uniquely expressed as

v = α1v1 + · · ·+ αkvk

I for a given vector space V, the number of vectors in any basis is the
same

I number of vectors in any basis is called the dimension of V, denoted
dimV
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Nullspace of a Matrix

the nullspace of A ∈ Rm×n is defined as

null(A) = {x ∈ Rn|Ax = 0}

I null(A) is set of vectors mapped to zero by y = Ax

I null(A) is set of vectors orthogonal to all rows of A

null(A) gives ambiguity in x given y = Ax :

I if y = Ax and z ∈ null(A), then y = A(x + z)

I conversely, if y = Ax and y = Ax̃ , then x̃ = x + z for some
z ∈ null(A)

null(A) is also written N (A)
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Zero Nullspace

A is called one-to-one if 0 is the only element of its null space

null(A) = {0}

Equivalently,

I x can always be uniquely determined from y = Ax (i.e., the linear
transformation y = Ax doesn’t ’lose’ information)

I mapping from x to Ax is one-to-one: different x ’s map to different
y ’s

I columns of A are independent (hence, a basis for their span)

I A has a left inverse, i.e., there is a matrix B ∈ Rn×m s.t. BA = I

I ATA is invertible
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Range of a Matrix

the range of A ∈ Rm×n is defined as

range(A) = {Ax |x ∈ Rn} ⊆ Rm

range(A) can be interpreted as

I the set of vectors that can be ’hit’ by linear mapping y = Ax

I the span of columns of A

I the set of vectors y for which Ax = y has a solution

range(A) is also written R(A)
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Eigenvector and Eigenvalue

I an eigenvector x of a linear transformation A is a non-zero vector
that, when A is applied to it, does not change direction

Ax = λx , x 6= 0.

I applying A to the vector only scales the vector by the scalar value λ,
called an eigenvalue.
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Eigenvector and Eigenvalue

I we want to find all the eigenvalues of A:

Ax = λx , x 6= 0.

I which can be written as:

Ax = (λI )x , x 6= 0.

I therefore:
(λI − A)x = 0, x 6= 0.
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Eigenvector and Eigenvalue

I we can solve for eigenvalues by solving :

(λI − A)x = 0, x 6= 0.

I above means that λI − A is not full rank, thus we can instead solve
the above equation as:

|(λI − A)| = 0.

I this is called characteristic polynomial of an n × n matrix
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Properties of Eigenvalues

I the trace of A is equal to the sume of its eigenvalues:

tr(A) =
n∑

i=1

λi

I the determinant of A is equal to the product of its eigenvalues

|A| =
n∏

i=1

λi

I the rank of A is equal to the number of non-zero eigenvalues of A

I for general A, it can be proved by Schur Decomposition easily
(omitted)

I for diagonalizable A, the proof is straightforward
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Diagonalization

I if matrix A can be diagonalized, that is,

P−1AP =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn


I then:

AP = P


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn


I write P = [~α1, . . . , ~αn], the above equation can be rewritten as

A~αi = λi~αi



19/45

Diagonalization by Spectral Decomposition

I here is a sufficient (but not necessary) condition

I assuming all λi ’s are unique, by eigenvalue equation:

AV = VD

A = VDV−1

I why?
I eigenvectors associated with different eigenvalues are linearly

independent, thus A invertible
I in fact, if A is symmetric, V could be orthonormal and A = VDV T
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Diagonalization (Summary)

I an n × n matrix A is diagonalizable if it has n linearly independent
(in fact, orthogonal) eigenvectors.

I matrices with n distinct eigenvalues are diagnolizable
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Symmetric Matrices

Properties

I for a real symmetric matrix A, all the eigenvalues are real

I A is diagonalizable

I the eigenvectors of A are orthonormal

A = VDV T
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Symmetric Matrices

I therefore

xTAx = xTVDV T x = yTDy =
n∑

i=1

λiy
2
i

where y = V T x

I so, if we wanted to find the vector x that

max
x∈Rn

xTAx subject to ‖x‖22 = 1
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Symmetric Matrices

I therefore

xTAx = xTVDV T x = yTDy =
n∑

i=1

λiy
2
i

where y = V T x

I so, if we wanted to find the vector x that

max
x∈Rn

xTAx subject to ‖x‖22 = 1

is the same as finding the eigenvector that corresponds to the largest
eigenvalue.
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Spectral Theory

I we call an eigenvalue λ and an associated eigenvector an eigenpair

I the space of vectors where (A− λI )x = 0 is often called the
eigenspace of A associated with the eigenvalue λ

I the set of all eigenvalues of A is called its spectrum:

σ(A) = {λ ∈ C : λI − A is singular}
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Spectral Theory

I the magnitude of the largest eigenvalue (in magnitude) is called the
spectral radius

ρ(A) = max{|λ1|, . . . , |λn|}
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Geometry of Linear Maps

every matrix A ∈ Rm×n maps the unit ball in Rn to an
ellipsoid in Rm

S = {x ∈ Rn|‖x‖ ≤ 1} AS = {Ax |x ∈ S}
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Singular Values and Singular Vectors

I first, assume A ∈ Rm×n is skinny and full rank

I the numbers σ1, . . . , σn > 0 are called the singular values of A

I the vectors u1, . . . , un are called the left or ourput singular vectors of
A. These are unit vectors along the principal semiaxes of AS

I the vectors v1, . . . , vn are called the right or input singular vectors of
A. These map to the principal semiaxes, so that

Avi = σiui
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Thin Singular Value Decomposition

Avi = σiui for 1 ≤ i ≤ n

For A ∈ Rm×n with rank(A) = n, let

U = [u1 u2 . . . un] Σ =


σ1

σ2
. . .

σn

 V = [v1 v2 . . . vn]

the above equation is AV = UΣ and since V is orthogonal

A = UΣV T

called the thin SVD of A
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Thin SVD

For A ∈ Rm×n with rank(A) = r , the thin SVD is

A = UΣV T =
r∑

i=1

σiuiv
T
i

here

I U ∈ Rm×r has orthonormal columns,

I Σ = diag(σ1, . . . , σr ), where σ1 ≥ · · ·σr > 0

I V ∈ Rn×r has orthonormal columns
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SVD and Eigenvectors

ATA = (UΣV T )T (UΣV T ) = VΣ2V T

hence:

I vi are eigenvectors of ATA (corresponding to nonzero eigenvalues)

I σi =
√
λi (ATA) (and λi (A

TA) = 0 for i > r)

I ‖A‖ = σ1
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SVD and Eigenvectors

similarly,
AAT = (UΣV T )(UΣV T )T = UΣ2UT

hence:

I ui are eigenvectors of AAT (corresponding to nonzero eigenvalues)

I σi =
√
λi (AAT ) (and λi (AA

T ) = 0 for i > r)
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SVD and Range

A = UΣV T

I u1, . . . , ur are orthonormal basis for range(A)

I v1, . . . , vr are orthonormal basis for null(A)⊥
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Interpretations

A = UΣV T =
r∑

i=1

σiuiv
T
i

linear mapping y = Ax can be decomposed as

I compute coefficients of x along input directions v1, . . . , vr
I scale coefficients by σi
I reconstitute along output directions u1, . . . , ur

difference with eigenvalue decomposition for symmetric A: input and
output directions are different
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General Pseudo-inverse

if A 6= 0 has SVD A = UΣV T , the pseudo-inverse or Moore-Penrose
inverse of A is

A† = VΣ−1UT

I if A is skinny and full rank,

A† = (ATA)−1AT

gives the least-squares approximate solution xls = A†y

I if A is fat and full rank,

A† = AT (AAT )−1

gives the least-norm solution xln = A†y
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Full SVD

SVD of A ∈ Rm×n with rank(A)=r

A = U1Σ1V
T
1 = [u1 · · · ur ]

σ1 . . .

σr


v

T
1
...
vT
r


Add extra columns to U and V , and add zero rows/cols to Σ1
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Full SVD

I find U2 ∈ Rm×(m−r) such that U = [U1 U2] ∈ Rm×m is orthogonal

I find V2 ∈ Rn×(n−r) such that V = [V1 V2] ∈ Rn×n is orthogonal

I add zero rows/cols to Σ1 to form Σ ∈ Rm×n

Σ =

[
Σi 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

]
then the full SVD is

A = U1Σ1V
T
1 =

[
U1 U2

] [ Σi 0r×(n−r)
0(m−r)×r 0(m−r)×(n−r)

] [
V T
1

V T
2

]
which is A = UΣV T
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Image of Unit Ball under Linear Transformation

full SVD:
A = UΣV T

gives interpretation of y = Ax

I rotate (by V T )

I stretch along axes by σi (σi = 0 for i > r)

I zero-pad (if m > n) or truncate (if m < n) to get m-vector

I rotate (by U)
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Matrix Calculus – the Gradient (first-order derivative)

I let a function f : Rm×n → R take as input a matrix A of size m × n
and returns a real value

I then the gradient of f :

∇Af (A) ∈ Rm×n =


∂f (A)
∂A11

∂f (A)
∂A12

. . . ∂f (A)
∂A1n

∂f (A)
∂A21

∂f (A)
∂A22

. . . ∂f (A)
∂A2n

...
...

. . .
...

∂f (A)
∂Am1

∂f (A)
∂Am2

. . . ∂f (A)
∂Amn


i.e., an m × n matrix with

(∇ij f (A))ij =
∂f (A)

∂Aij

I vectors are m × 1 matrices
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Matrix Calculus – the Gradient (first-order derivative)

Gradient operator ∇ is linear:

I ∇x(f (x) + g(x)) = ∇x f (x) +∇xg(x)

I For t ∈ R, ∇x(tf (x)) = t∇x f (x)
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Matrix Calculus – the Hessian (second-order derivative)

I Consider a vector function f (x) defined as f : Rn → R. The
Hessian w.r.t x is an n × n matrix:

∇f (x) ∈ Rn×n =


∂2f (x)
∂x2

1

∂2f (x)
∂x1∂x2

· · · ∂2f (x)
∂x1∂xn

∂2f (x)
∂x2∂x1

∂2f (x)
∂2x2

2
· · · ∂2f (x)

∂x2∂xn
...

...
. . .

...
∂2f (x)
∂xn∂x1

∂2f (x)
∂xn∂x2

· · · ∂2f (x)
∂x2

n


I In other words,

(∇2
x f (x))ij =

∂2f (x)

∂xi∂xj

I Note that Hessian is always symmetric since

∂2f (x)

∂xi∂xj
=
∂2f (x)

∂xj∂xi
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Gradients of Quadratic Vector Functions

I Consider a quadratic function f (x) = xTAx for A ∈ S. Remember
that

f (x) =
∑
i

∑
j

Aijxixj

I If you take partial derivative, after calculation, we will have

∂f (x)

∂xk
= 2

n∑
i=1

Akixi

I This result can be written compactly in matrix form:

∇x f (x) = 2Ax
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Hessian of Quadratic Vector Functions

I Let’s look at the Hessian of the quadratic function f (x) = xTAx

∂2f (x)

∂xk∂xl
=

∂

∂xk

[
∂f (x)

∂xl

]
= 2Alk = 2Akl

I Matrix form: ∇xx
TAx = 2A
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Summary of Matrix Calculus

I ∇xb
T x = b

I ∇2
xb

T x = 0

I ∇xx
TAx = Ax + AT x (if A not symmetric)

I ∇xx
TAx = 2Ax (if A symmetric)

I ∇xx
TAx = A + AT (if A not symmetric)

I ∇xx
TAx = 2A (if A symmetric)
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