Linear Algebra Primer (cont')

Note: the slides are based on CS131 (Juan Carlos et al) and EE263 (by Stephen Boyd et al) at Stanford. Reorganized, revised, and typed by Hao Su

Outline

Geometry of Linear Algebra

- Vector spaces
- Basis, dimension
- Nullspace, range
- Spectral Decomposition
 - Eigenpairs
 - Spectral theory
- Singular Value Decomposition
 - Geometry of linear maps
 - Singular values, singular vectors
 - Pseudo-inverse
- Matrix Calculus
 - Gradient

Outline

Geometry of Linear Algebra

- Vector spaces
- Basis, dimension
- Nullspace, range
- Spectral Decomposition
 - Eigenpairs
 - Spectral theory
- Singular Value Decomposition
 - Geometry of linear maps
 - Singular values, singular vectors
 - Pseudo-inverse
- Matrix Calculus
 - Gradient

Vector Spaces

- a vector space or linear space (over the reals) consists of
 - \blacktriangleright a set \mathcal{V}
 - ▶ a vector sum +: $\mathcal{V} \times \mathcal{V} \rightarrow \mathcal{V}$
 - \blacktriangleright a scalar multiplication: $\mathbb{R}\times\mathcal{V}\rightarrow\mathcal{V}$
 - \blacktriangleright a distinguished element $0 \in \mathcal{V}$

which satisfy a list of properties

Vector Space Axioms

+ is commutative
+ is associative
0 is additive identity
existence of additive inverse
scalar mult. is associative
right distributive rule
left distributive rule
1 is mult. identity

Examples

▶ $\mathcal{V}_1 = \mathbb{R}^n$, with standard (componentwise) vector addition and scalar multiplication

►
$$\mathcal{V}_2 = \{0\}$$
 (where $0 \in \mathbb{R}^n$)
► $\mathcal{V}_3 = \operatorname{span}(v_1, v_2, \dots, v_k)$ where
 $\operatorname{span}(v_1, v_2, \dots, v_k) = \{\alpha_1 v_1 + \dots + \alpha_k v_k | \alpha_i \in \mathbb{R}\}$
and $v_1, \dots, v_k \in \mathbb{R}^n$

Subspaces

- a subspace of a vector space is a subset of a vector space which is itself a vector space
- roughly speaking, a subspace is closed under vector addition and scalar multiplication
- examples $\mathcal{V}_1, \mathcal{V}_3, \mathcal{V}_3$ above are subspaces of \mathbb{R}^n

Vector Spaces of Functions

▶ $\mathcal{V}_4 = \{x : \mathbb{R}_+ \to \mathbb{R}^n | x \text{ is differentiable} \}$, where vector sum is sum of functions:

$$(x+z)(t) = x(t) + z(t)]$$

and scalar multiplication is defined by

$$(\alpha x)(t) = \alpha x(t)$$

(a *point* in \mathcal{V}_4 is a *trajectory* in \mathbb{R}^n)

- ► $\mathcal{V}_5 = \{x \in \mathcal{V}_4 | \dot{x} = Ax\}$ (*points* in \mathcal{V}_5 are *trajectories* of the linear system $\dot{x} = Ax$)
- \blacktriangleright \mathcal{V}_5 is a subspace of \mathcal{V}_4

Basis and Dimension

set of vectors $\{v_1, v_k, \ldots, v_k\}$ is called a *basis* for a vector space \mathcal{V} if

 $\mathcal{V} = \mathbf{span}(v_1, v_2, \dots, v_k)$ and $\{v_1, v_2, \dots, v_k\}$ is independent

• equivalently, every $v \in \mathcal{V}$ can be uniquely expressed as

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_k \mathbf{v}_k$$

- for a given vector space V, the number of vectors in any basis is the same
- number of vectors in any basis is called the *dimension* of V, denoted dimV

Nullspace of a Matrix

the *nullspace* of $A \in \mathbb{R}^{m \times n}$ is defined as

$$\operatorname{\mathsf{null}}(A) = \{x \in \mathbb{R}^n | Ax = 0\}$$

• $\mathbf{null}(A)$ is set of vectors mapped to zero by y = Ax

null(A) is set of vectors orthogonal to all rows of A **null**(A) gives *ambiguity* in x given y = Ax:

• if
$$y = Ax$$
 and $z \in \operatorname{null}(A)$, then $y = A(x + z)$

• conversely, if y = Ax and $y = A\tilde{x}$, then $\tilde{x} = x + z$ for some $z \in \mathsf{null}(A)$

 $\mathbf{null}(A)$ is also written $\mathcal{N}(A)$

Zero Nullspace

A is called *one-to-one* if 0 is the only element of its null space

 $null(A) = \{0\}$

Equivalently,

- ▶ x can always be uniquely determined from y = Ax (i.e., the linear transformation y = Ax doesn't 'lose' information)
- mapping from x to Ax is one-to-one: different x's map to different y's
- columns of A are independent (hence, a basis for their span)
- A has a *left inverse*, i.e., there is a matrix $B \in \mathbb{R}^{n \times m}$ s.t. BA = I
- $\blacktriangleright A^T A$ is invertible

Range of a Matrix

the *range* of $A \in \mathbb{R}^{m \times n}$ is defined as

$$range(A) = \{Ax | x \in \mathbb{R}^n\} \subseteq \mathbb{R}^m$$

range(A) can be interpreted as

• the set of vectors that can be 'hit' by linear mapping y = Ax

the span of columns of A

• the set of vectors y for which Ax = y has a solution range(A) is also written $\mathcal{R}(A)$

Outline

- Geometry of Linear Algebra
 - Vector spaces
 - Basis, dimension
 - Nullspace, range
- Spectral Decomposition
 - Eigenpairs
 - Spectral theory
- Singular Value Decomposition
 - Geometry of linear maps
 - Singular values, singular vectors
 - Pseudo-inverse
- Matrix Calculus
 - Gradient
 - Jacobian
 - Hessian

an eigenvector x of a linear transformation A is a non-zero vector that, when A is applied to it, does not change direction

$$Ax = \lambda x, \qquad x \neq 0.$$

• applying A to the vector only scales the vector by the scalar value λ , called an *eigenvalue*.

Eigenvector and Eigenvalue

we want to find all the eigenvalues of A:

$$Ax = \lambda x, \qquad x \neq 0.$$

which can be written as:

$$Ax = (\lambda I)x, \qquad x \neq 0.$$

therefore:

$$(\lambda I - A)x = 0, \qquad x \neq 0.$$

Eigenvector and Eigenvalue

we can solve for eigenvalues by solving :

$$(\lambda I - A)x = 0, \qquad x \neq 0.$$

▶ above means that $\lambda I - A$ is not full rank, thus we can instead solve the above equation as:

$$|(\lambda I - A)| = 0.$$

• this is called *characteristic polynomial* of an $n \times n$ matrix

Properties of Eigenvalues

the trace of A is equal to the sume of its eigenvalues:

$$\mathsf{tr}(A) = \sum_{i=1}^n \lambda_i$$

the determinant of A is equal to the product of its eigenvalues

$$|A| = \prod_{i=1}^n \lambda_i$$

- ▶ the rank of A is equal to the number of non-zero eigenvalues of A
- for general A, it can be proved by Schur Decomposition easily (omitted)
- ▶ for diagonalizable *A*, the proof is straightforward

Diagonalization

▶ if matrix A can be *diagonalized*, that is,

$$P^{-1}AP = egin{pmatrix} \lambda_1 & 0 & \dots & 0 \ 0 & \lambda_2 & \dots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

$$AP = P \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

• write $P = [\vec{\alpha}_1, \dots, \vec{\alpha}_n]$, the above equation can be rewritten as

$$A\vec{\alpha}_i = \lambda_i \vec{\alpha}_i$$

Diagonalization by Spectral Decomposition

- here is a sufficient (but not necessary) condition
- > assuming all λ_i 's are unique, by eigenvalue equation:

AV = VD

$$A = VDV^{-1}$$

► why?

- eigenvectors associated with different eigenvalues are linearly independent, thus A invertible
- ▶ in fact, if A is symmetric, V could be orthonormal and $A = VDV^{T}$

Diagonalization (Summary)

- an n × n matrix A is diagonalizable if it has n linearly independent (in fact, orthogonal) eigenvectors.
- matrices with n distinct eigenvalues are diagnolizable

Symmetric Matrices

Properties

- ▶ for a real symmetric matrix A, all the eigenvalues are real
- ► A is diagonalizable
- ▶ the eigenvectors of *A* are orthonormal

 $A = VDV^T$

Symmetric Matrices

► therefore

$$x^{T}Ax = x^{T}VDV^{T}x = y^{T}Dy = \sum_{i=1}^{n} \lambda_{i}y_{i}^{2}$$

where $y = V^T x$

so, if we wanted to find the vector x that

$$\max_{x \in \mathbb{R}^n} x^T A x \qquad \text{subject to } \|x\|_2^2 = 1$$

Symmetric Matrices

therefore

$$x^{T}Ax = x^{T}VDV^{T}x = y^{T}Dy = \sum_{i=1}^{n} \lambda_{i}y_{i}^{2}$$

where $y = V^T x$

so, if we wanted to find the vector x that

 $\max_{x \in \mathbb{R}^n} x^T A x \qquad \text{subject to } \|x\|_2^2 = 1$

is the same as finding the eigenvector that corresponds to the largest eigenvalue.

Spectral Theory

- we call an eigenvalue λ and an associated eigenvector an *eigenpair*
- the space of vectors where (A λI)x = 0 is often called the eigenspace of A associated with the eigenvalue λ
- the set of all eigenvalues of A is called its spectrum:

$$\sigma(A) = \{\lambda \in \mathbb{C} : \lambda I - A \text{ is singular}\}\$$

Spectral Theory

the magnitude of the largest eigenvalue (in magnitude) is called the spectral radius

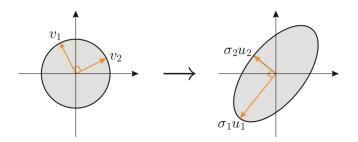
$$\rho(A) = \max\{|\lambda_1|, \ldots, |\lambda_n|\}$$

Outline

Geometry of Linear Algebra

- Vector spaces
- Basis, dimension
- Nullspace, range
- Spectral Decomposition
 - Eigenpairs
 - Spectral theory
- Singular Value Decomposition
 - Geometry of linear maps
 - Singular values, singular vectors
 - Pseudo-inverse
- Matrix Calculus
 - Gradient

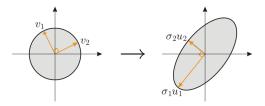
Geometry of Linear Maps



every matrix $A \in \mathbb{R}^{m \times n}$ maps the unit ball in \mathbb{R}^n to an ellipsoid in \mathbb{R}^m

 $S = \{x \in \mathbb{R}^n | \|x\| \le 1\} \qquad AS = \{Ax | x \in S\}$

Singular Values and Singular Vectors



- first, assume $A \in \mathbb{R}^{m \times n}$ is skinny and full rank
- the numbers $\sigma_1, \ldots, \sigma_n > 0$ are called the *singular values* of A
- the vectors u₁,..., u_n are called the *left* or *ourput singular vectors* of A. These are *unit vectors* along the principal semiaxes of AS
- the vectors v₁,..., v_n are called the *right* or *input singular vectors* of A. These map to the principal semiaxes, so that

$$Av_i = \sigma_i u_i$$

Thin Singular Value Decomposition

 $Av_i = \sigma_i u_i$ for $1 \leq i \leq n$

For $A \in \mathbb{R}^{m \times n}$ with rank(A) = n, let

$$U = \begin{bmatrix} u_1 & u_2 & \dots & u_n \end{bmatrix} \qquad \Sigma = \begin{bmatrix} \sigma_1 & & & \\ & \sigma_2 & & \\ & & \ddots & \\ & & & \ddots & \\ & & & & \sigma_n \end{bmatrix} \qquad V = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}$$

the above equation is $AV = U\Sigma$ and since V is orthogonal

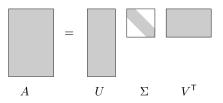
 $A = U \Sigma V^T$

called the thin SVD of A

Thin SVD

For $A \in \mathbb{R}^{m \times n}$ with rank(A) = r, the *thin SVD* is

$$A = U\Sigma V^{T} = \sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T}$$



here

▶ $U \in \mathbb{R}^{m \times r}$ has orthonormal columns,

•
$$\Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_r)$$
, where $\sigma_1 \geq \cdots \sigma_r > 0$

▶ $V \in \mathbb{R}^{n \times r}$ has orthonormal columns

SVD and Eigenvectors

$$A^{T}A = (U\Sigma V^{T})^{T}(U\Sigma V^{T}) = V\Sigma^{2}V^{T}$$

hence:

v_i are eigenvectors of A^TA (corresponding to nonzero eigenvalues)
 σ_i = √λ_i(A^TA) (and λ_i(A^TA) = 0 for i > r)
 ||A|| = σ₁

SVD and Eigenvectors

similarly,

$$AA^{T} = (U\Sigma V^{T})(U\Sigma V^{T})^{T} = U\Sigma^{2}U^{T}$$

hence:

u_i are eigenvectors of *AA^T* (corresponding to nonzero eigenvalues)
 σ_i = √λ_i(*AA^T*) (and λ_i(*AA^T*) = 0 for *i* > *r*)

SVD and Range

$$A = U \Sigma V^T$$

*u*₁,..., *u_r* are orthonormal basis for range(A)
 *v*₁,..., *v_r* are orthonormal basis for null(A)[⊥]

Interpretations

$$A = U\Sigma V^{T} = \sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T}$$

$$\xrightarrow{x} V^{T} \xrightarrow{V^{T}x} \Sigma \xrightarrow{\Sigma V^{T}x} U \xrightarrow{Ax}$$

linear mapping y = Ax can be decomposed as

- compute coefficients of x along input directions v_1, \ldots, v_r
- scale coefficients by σ_i
- ▶ reconstitute along output directions u_1, \ldots, u_r

difference with eigenvalue decomposition for symmetric A: input and output directions are *different*

General Pseudo-inverse

if $A \neq 0$ has SVD $A = U\Sigma V^T$, the *pseudo-inverse* or *Moore-Penrose inverse* of A is

$$A^{\dagger} = V \Sigma^{-1} U^{T}$$

if A is skinny and full rank,

$$A^{\dagger} = (A^{T}A)^{-1}A^{T}$$

gives the least-squares approximate solution $x_{ls} = A^{\dagger}y$ if A is fat and full rank,

$$A^{\dagger} = A^{T} (A A^{T})^{-1}$$

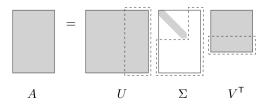
gives the least-norm solution $x_{ln} = A^{\dagger}y$

Full SVD

SVD of $A \in \mathbb{R}^{m \times n}$ with rank(A) = r

$$A = U_1 \Sigma_1 V_1^T = \begin{bmatrix} u_1 & \cdots & u_r \end{bmatrix} \begin{bmatrix} \sigma_1 & \cdots & \\ & \ddots & \\ & & \sigma_r \end{bmatrix} \begin{bmatrix} v_1^T \\ \vdots \\ v_r^T \end{bmatrix}$$

Add extra columns to U and V, and add zero rows/cols to Σ_1



Full SVD

- ▶ find $U_2 \in \mathbb{R}^{m \times (m-r)}$ such that $U = [U_1 \ U_2] \in \mathbb{R}^{m \times m}$ is orthogonal
- ▶ find $V_2 \in \mathbb{R}^{n \times (n-r)}$ such that $V = [V_1 \ V_2] \in \mathbb{R}^{n \times n}$ is orthogonal
- ▶ add zero rows/cols to Σ_1 to form $\Sigma \in \mathbb{R}^{m \times n}$

$$\Sigma = \left[\frac{\Sigma_i \quad 0_{r \times (n-r)}}{0_{(m-r) \times r} \quad 0_{(m-r) \times (n-r)}} \right]$$

then the full SVD is

$$A = U_1 \Sigma_1 V_1^T = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \Sigma_i & 0_{r \times (n-r)} \\ \hline & 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{bmatrix} \begin{bmatrix} V_1^T \\ \hline & V_2^T \end{bmatrix}$$

which is $A = U \Sigma V^T$

Image of Unit Ball under Linear Transformation

full SVD:

$$A = U \Sigma V^T$$

gives interpretation of y = Ax

- ▶ rotate (by V^T)
- stretch along axes by σ_i ($\sigma_i = 0$ for i > r)
- ▶ zero-pad (if m > n) or truncate (if m < n) to get *m*-vector
- ▶ rotate (by *U*)

Outline

Geometry of Linear Algebra

- Vector spaces
- Basis, dimension
- Nullspace, range
- Spectral Decomposition
 - Eigenpairs
 - Spectral theory
- Singular Value Decomposition
 - Geometry of linear maps
 - Singular values, singular vectors
 - Pseudo-inverse
- Matrix Calculus
 - Gradient

Matrix Calculus – the Gradient (first-order derivative)

- ▶ let a function $f : \mathbb{R}^{m \times n} \to \mathbb{R}$ take as input a matrix A of size $m \times n$ and returns a real value
- then the gradient of f:

$$\nabla_{A}f(A) \in \mathbb{R}^{m \times n} = \begin{bmatrix} \frac{\partial f(A)}{\partial A_{11}} & \frac{\partial f(A)}{\partial A_{12}} & \cdots & \frac{\partial f(A)}{\partial A_{1n}} \\ \frac{\partial f(A)}{\partial A_{21}} & \frac{\partial f(A)}{\partial A_{22}} & \cdots & \frac{\partial f(A)}{\partial A_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f(A)}{\partial A_{m1}} & \frac{\partial f(A)}{\partial A_{m2}} & \cdots & \frac{\partial f(A)}{\partial A_{mn}} \end{bmatrix}$$

i.e., an $m \times n$ matrix with

$$(\nabla_{ij}f(A))_{ij}=rac{\partial f(A)}{\partial A_{ij}}$$

• vectors are $m \times 1$ matrices

Matrix Calculus – the Gradient (first-order derivative)

Gradient operator $\boldsymbol{\nabla}$ is linear:

►
$$\nabla_x(f(x) + g(x)) = \nabla_x f(x) + \nabla_x g(x)$$

► For $t \in \mathbb{R}$, $\nabla_x(tf(x)) = t\nabla_x f(x)$

Matrix Calculus – the Hessian (second-order derivative)

Consider a vector function f(x) defined as f : ℝⁿ → ℝ. The Hessian w.r.t x is an n × n matrix:

$$\nabla f(x) \in \mathbb{R}^{n \times n} = \begin{bmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial^2 x_2^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2} \end{bmatrix}$$

In other words,

$$(\nabla_x^2 f(x))_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}$$

Note that Hessian is always symmetric since

$$\frac{\partial^2 f(x)}{\partial x_i \partial x_j} = \frac{\partial^2 f(x)}{\partial x_j \partial x_i}$$

Gradients of Quadratic Vector Functions

Consider a quadratic function f(x) = x^TAx for A ∈ S. Remember that

$$f(x) = \sum_{i} \sum_{j} A_{ij} x_i x_j$$

If you take partial derivative, after calculation, we will have

$$\frac{\partial f(x)}{\partial x_k} = 2\sum_{i=1}^n A_{ki} x_i$$

This result can be written compactly in matrix form:

 $\nabla_x f(x) = 2Ax$

Hessian of Quadratic Vector Functions

• Let's look at the Hessian of the quadratic function $f(x) = x^T A x$

$$\frac{\partial^2 f(x)}{\partial x_k \partial x_l} = \frac{\partial}{\partial x_k} \left[\frac{\partial f(x)}{\partial x_l} \right] = 2A_{lk} = 2A_{kl}$$

• Matrix form: $\nabla_x x^T A x = 2A$

Summary of Matrix Calculus

$$\nabla_x b^T x = b$$

$$\nabla_x^2 b^T x = 0$$

$$\nabla_x x^T A x = A x + A^T x \text{ (if } A \text{ not symmetric)}$$

•
$$\nabla_x x^T A x = 2A x$$
 (if A symmetric)

$$\nabla_x x^T A x = A + A^T$$
 (if A not symmetric)

$$\nabla_x x^T A x = 2A$$
 (if A symmetric)