Linear Algebra Primer (cont')

Note: the slides are based on CS131 (Juan Carlos et al) and EE263 (by Stephen Boyd et al) at Stanford. Reorganized, revised, and typed by Hao Su

Outline

- Geometry of Linear Algebra
- Vector spaces
- Basis, dimension
- Nullspace, range
- Spectral Decomposition
- Eigenpairs
- Spectral theory
- Singular Value Decomposition
- Geometry of linear maps
- Singular values, singular vectors
- Pseudo-inverse
- Matrix Calculus
- Gradient

Outline

- Geometry of Linear Algebra
- Vector spaces
- Basis, dimension
- Nullspace, range
- Spectral Decomposition
- Eigenpairs
- Spectral theory
- Singular Value Decomposition
- Geometry of linear maps
- Singular values, singular vectors
- Pseudo-inverse
- Matrix Calculus
- Gradient

Vector Spaces

a vector space or linear space (over the reals) consists of

- a set \mathcal{V}
- a vector sum +: $\mathcal{V} \times \mathcal{V} \rightarrow \mathcal{V}$
- a scalar multiplication: $\mathbb{R} \times \mathcal{V} \rightarrow \mathcal{V}$
- a distinguished element $0 \in \mathcal{V}$
which satisfy a list of properties

Vector Space Axioms

- $x+y=y+x, \forall x, y \in \mathcal{V}$
- $(x+y)+z=x+(y+z), \forall x, y, z \in \mathcal{V}$
- $0+x=x, x \in \mathcal{V}$
- $\forall x \in \mathcal{V} \quad \exists(-x) \in \mathcal{V}$ s.t. $x+(-x)=0$
- $(\alpha \beta) x=\alpha(\beta x), \quad \forall \alpha, \beta \in \mathbb{R} \quad \forall x \in \mathcal{V}$
- $\alpha(x+y)=\alpha x+\alpha y, \quad \forall \alpha \in \mathbb{R} \quad \forall x, y \in \mathcal{V}$
- $(\alpha+\beta) x=\alpha x+\beta x, \quad \forall \alpha, \beta \in \mathbb{R} \quad \forall x \in \mathcal{V}$
- $1 x=x, \quad \forall x \in \mathcal{V}$
+ is commutative
+ is associative
0 is additive identity existence of additive inverse scalar mult. is associative right distributive rule left distributive rule
1 is mult. identity

Examples

- $\mathcal{V}_{1}=\mathbb{R}^{n}$, with standard (componentwise) vector addition and scalar multiplication
- $\mathcal{V}_{2}=\{0\}\left(\right.$ where $\left.0 \in \mathbb{R}^{n}\right)$
- $\mathcal{V}_{3}=\boldsymbol{\operatorname { s p a n }}\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ where $\boldsymbol{\operatorname { s p a n }}\left(v_{1}, v_{2}, \ldots, v_{k}\right)=\left\{\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k} \mid \alpha_{i} \in \mathbb{R}\right\}$ and $v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$

Subspaces

- a subspace of a vector space is a subset of a vector space which is itself a vector space
- roughly speaking, a subspace is closed under vector addition and scalar multiplication
- examples $\mathcal{V}_{1}, \mathcal{V}_{3}, \mathcal{V}_{3}$ above are subspaces of \mathbb{R}^{n}

Vector Spaces of Functions

- $\mathcal{V}_{4}=\left\{x: \mathbb{R}_{+} \rightarrow \mathbb{R}^{n} \mid x\right.$ is differentiable $\}$, where vector sum is sum of functions:

$$
(x+z)(t)=x(t)+z(t)]
$$

and scalar multiplication is defined by

$$
(\alpha x)(t)=\alpha x(t)
$$

(a point in \mathcal{V}_{4} is a trajectory in \mathbb{R}^{n})

- $\mathcal{V}_{5}=\left\{x \in \mathcal{V}_{4} \mid \dot{x}=A x\right\}$
(points in \mathcal{V}_{5} are trajectories of the linear system $\dot{x}=A x$)
- \mathcal{V}_{5} is a subspace of \mathcal{V}_{4}

Basis and Dimension

set of vectors $\left\{v_{1}, v_{k}, \ldots, v_{k}\right\}$ is called a basis for a vector space \mathcal{V} if

$$
\begin{gathered}
\mathcal{V}=\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{k}\right) \\
\text { and } \\
\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \text { is independent }
\end{gathered}
$$

- equivalently, every $v \in \mathcal{V}$ can be uniquely expressed as

$$
v=\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k}
$$

- for a given vector space \mathcal{V}, the number of vectors in any basis is the same
- number of vectors in any basis is called the dimension of \mathcal{V}, denoted $\operatorname{dim} V$

Nullspace of a Matrix

the nullspace of $A \in \mathbb{R}^{m \times n}$ is defined as

$$
\operatorname{null}(A)=\left\{x \in \mathbb{R}^{n} \mid A x=0\right\}
$$

- null (A) is set of vectors mapped to zero by $y=A x$
- null (A) is set of vectors orthogonal to all rows of A
null(A) gives ambiguity in x given $y=A x$:
- if $y=A x$ and $z \in \operatorname{null}(A)$, then $y=A(x+z)$
- conversely, if $y=A x$ and $y=A \tilde{x}$, then $\tilde{x}=x+z$ for some $z \in \operatorname{null}(A)$
$\operatorname{null}(A)$ is also written $\mathcal{N}(A)$

Zero Nullspace

A is called one-to-one if 0 is the only element of its null space

$$
\operatorname{null}(A)=\{0\}
$$

Equivalently,

- x can always be uniquely determined from $y=A x$ (i.e., the linear transformation $y=A x$ doesn't 'lose' information)
- mapping from x to $A x$ is one-to-one: different x 's map to different y 's
- columns of A are independent (hence, a basis for their span)
- A has a left inverse, i.e., there is a matrix $B \in \mathbb{R}^{n \times m}$ s.t. $B A=I$
- $A^{T} A$ is invertible

Range of a Matrix

the range of $A \in \mathbb{R}^{m \times n}$ is defined as

$$
\operatorname{range}(A)=\left\{A x \mid x \in \mathbb{R}^{n}\right\} \subseteq \mathbb{R}^{m}
$$

range (A) can be interpreted as

- the set of vectors that can be 'hit' by linear mapping $y=A x$
- the span of columns of A
- the set of vectors y for which $A x=y$ has a solution range (A) is also written $\mathcal{R}(A)$

Outline

- Geometry of Linear Algebra
- Vector spaces
- Basis, dimension
- Nullspace, range
- Spectral Decomposition
- Eigenpairs
- Spectral theory
- Singular Value Decomposition
- Geometry of linear maps
- Singular values, singular vectors
- Pseudo-inverse
- Matrix Calculus
- Gradient
- Jacobian
- Hessian

Eigenvector and Eigenvalue

- an eigenvector x of a linear transformation A is a non-zero vector that, when A is applied to it, does not change direction

$$
A x=\lambda x, \quad x \neq 0
$$

- applying A to the vector only scales the vector by the scalar value λ, called an eigenvalue.

Eigenvector and Eigenvalue

- we want to find all the eigenvalues of A :

$$
A x=\lambda x, \quad x \neq 0
$$

- which can be written as:

$$
A x=(\lambda I) x, \quad x \neq 0
$$

- therefore:

$$
(\lambda I-A) x=0, \quad x \neq 0 .
$$

Eigenvector and Eigenvalue

- we can solve for eigenvalues by solving :

$$
(\lambda I-A) x=0, \quad x \neq 0 .
$$

- above means that $\lambda I-A$ is not full rank, thus we can instead solve the above equation as:

$$
|(\lambda I-A)|=0 .
$$

- this is called characteristic polynomial of an $n \times n$ matrix

Properties of Eigenvalues

- the trace of A is equal to the sume of its eigenvalues:

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} \lambda_{i}
$$

- the determinant of A is equal to the product of its eigenvalues

$$
|A|=\prod_{i=1}^{n} \lambda_{i}
$$

- the rank of A is equal to the number of non-zero eigenvalues of A
- for general A, it can be proved by Schur Decomposition easily (omitted)
- for diagonalizable A, the proof is straightforward

Diagonalization

- if matrix A can be diagonalized, that is,

$$
P^{-1} A P=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right)
$$

- then:

$$
A P=P\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right)
$$

- write $P=\left[\vec{\alpha}_{1}, \ldots, \vec{\alpha}_{n}\right]$, the above equation can be rewritten as

$$
A \vec{\alpha}_{i}=\lambda_{i} \vec{\alpha}_{i}
$$

Diagonalization by Spectral Decomposition

- here is a sufficient (but not necessary) condition
- assuming all λ_{i} 's are unique, by eigenvalue equation:

$$
\begin{gathered}
A V=V D \\
A=V D V^{-1}
\end{gathered}
$$

- why?
- eigenvectors associated with different eigenvalues are linearly independent, thus A invertible
- in fact, if A is symmetric, V could be orthonormal and $A=V D V^{\top}$

Diagonalization (Summary)

- an $n \times n$ matrix A is diagonalizable if it has n linearly independent (in fact, orthogonal) eigenvectors.
- matrices with n distinct eigenvalues are diagnolizable

Symmetric Matrices

Properties

- for a real symmetric matrix A, all the eigenvalues are real
- A is diagonalizable
- the eigenvectors of A are orthonormal

$$
A=V D V^{\top}
$$

Symmetric Matrices

- therefore

$$
x^{T} A x=x^{T} V D V^{T} x=y^{T} D y=\sum_{i=1}^{n} \lambda_{i} y_{i}^{2}
$$

where $y=V^{T} x$

- so, if we wanted to find the vector x that

$$
\max _{x \in \mathbb{R}^{n}} x^{T} A x \quad \text { subject to }\|x\|_{2}^{2}=1
$$

Symmetric Matrices

- therefore

$$
x^{T} A x=x^{T} V D V^{T} x=y^{T} D y=\sum_{i=1}^{n} \lambda_{i} y_{i}^{2}
$$

where $y=V^{\top} x$

- so, if we wanted to find the vector x that

$$
\max _{x \in \mathbb{R}^{n}} x^{\top} A x \quad \text { subject to }\|x\|_{2}^{2}=1
$$

is the same as finding the eigenvector that corresponds to the largest eigenvalue.

Spectral Theory

- we call an eigenvalue λ and an associated eigenvector an eigenpair
- the space of vectors where $(A-\lambda I) x=0$ is often called the eigenspace of A associated with the eigenvalue λ
- the set of all eigenvalues of A is called its spectrum:

$$
\sigma(A)=\{\lambda \in \mathbb{C}: \lambda I-A \text { is singular }\}
$$

Spectral Theory

- the magnitude of the largest eigenvalue (in magnitude) is called the spectral radius

$$
\rho(A)=\max \left\{\left|\lambda_{1}\right|, \ldots,\left|\lambda_{n}\right|\right\}
$$

Outline

- Geometry of Linear Algebra
- Vector spaces
- Basis, dimension
- Nullspace, range
- Spectral Decomposition
- Eigenpairs
- Spectral theory
- Singular Value Decomposition
- Geometry of linear maps
- Singular values, singular vectors
- Pseudo-inverse
- Matrix Calculus
- Gradient

Geometry of Linear Maps

every matrix $A \in \mathbb{R}^{m \times n}$ maps the unit ball in \mathbb{R}^{n} to an ellipsoid in \mathbb{R}^{m}

$$
S=\left\{x \in \mathbb{R}^{n} \mid\|x\| \leq 1\right\} \quad A S=\{A x \mid x \in S\}
$$

Singular Values and Singular Vectors

- first, assume $A \in \mathbb{R}^{m \times n}$ is skinny and full rank
- the numbers $\sigma_{1}, \ldots, \sigma_{n}>0$ are called the singular values of A
- the vectors u_{1}, \ldots, u_{n} are called the left or ourput singular vectors of A. These are unit vectors along the principal semiaxes of $A S$
- the vectors v_{1}, \ldots, v_{n} are called the right or input singular vectors of A. These map to the principal semiaxes, so that

$$
A v_{i}=\sigma_{i} u_{i}
$$

Thin Singular Value Decomposition

$$
A v_{i}=\sigma_{i} u_{i} \text { for } 1 \leq i \leq n
$$

For $A \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(A)=n$, let
$U=\left[\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{n}\end{array}\right] \quad \Sigma=\left[\begin{array}{llll}\sigma_{1} & & & \\ & \sigma_{2} & & \\ & & \ddots & \\ & & & \sigma_{n}\end{array}\right] \quad V=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]$
the above equation is $A V=U \Sigma$ and since V is orthogonal

$$
A=U \Sigma V^{T}
$$

called the thin SVD of A

Thin SVD

For $A \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(A)=r$, the thin SVD is

$$
A=U \Sigma V^{T}=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T}
$$

here

- $U \in \mathbb{R}^{m \times r}$ has orthonormal columns,
- $\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}\right)$, where $\sigma_{1} \geq \cdots \sigma_{r}>0$
- $V \in \mathbb{R}^{n \times r}$ has orthonormal columns

SVD and Eigenvectors

$$
A^{\top} A=\left(U \Sigma V^{\top}\right)^{T}\left(U \Sigma V^{\top}\right)=V \Sigma^{2} V^{\top}
$$

hence:

- v_{i} are eigenvectors of $A^{T} A$ (corresponding to nonzero eigenvalues)
- $\sigma_{i}=\sqrt{\lambda_{i}\left(A^{T} A\right)}$ (and $\lambda_{i}\left(A^{T} A\right)=0$ for $i>r$)
- $\|A\|=\sigma_{1}$

SVD and Eigenvectors

similarly,

$$
A A^{T}=\left(U \Sigma V^{T}\right)\left(U \Sigma V^{T}\right)^{T}=U \Sigma^{2} U^{T}
$$

hence:

- u_{i} are eigenvectors of $A A^{T}$ (corresponding to nonzero eigenvalues)
- $\sigma_{i}=\sqrt{\lambda_{i}\left(A A^{T}\right)}$ (and $\lambda_{i}\left(A A^{T}\right)=0$ for $\left.i>r\right)$

SVD and Range

$$
A=U \Sigma V^{T}
$$

- u_{1}, \ldots, u_{r} are orthonormal basis for range (A)
- v_{1}, \ldots, v_{r} are orthonormal basis for $\operatorname{null}(A)^{\perp}$

Interpretations

$$
A=U \Sigma V^{T}=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T}
$$

linear mapping $y=A x$ can be decomposed as

- compute coefficients of x along input directions v_{1}, \ldots, v_{r}
- scale coefficients by σ_{i}
- reconstitute along output directions u_{1}, \ldots, u_{r}
difference with eigenvalue decomposition for symmetric A : input and output directions are different

General Pseudo-inverse

if $A \neq 0$ has SVD $A=U \Sigma V^{\top}$, the pseudo-inverse or Moore-Penrose inverse of A is

$$
A^{\dagger}=V \Sigma^{-1} U^{\top}
$$

- if A is skinny and full rank,

$$
A^{\dagger}=\left(A^{T} A\right)^{-1} A^{T}
$$

gives the least-squares approximate solution $x_{l s}=A^{\dagger} y$

- if A is fat and full rank,

$$
A^{\dagger}=A^{T}\left(A A^{T}\right)^{-1}
$$

gives the least-norm solution $x_{l n}=A^{\dagger} y$

Full SVD

SVD of $A \in \mathbb{R}^{m \times n}$ with $\boldsymbol{\operatorname { r a n k }}(\mathrm{A})=\mathrm{r}$

$$
A=U_{1} \Sigma_{1} V_{1}^{T}=\left[\begin{array}{lll}
u_{1} & \cdots & u_{r}
\end{array}\right]\left[\begin{array}{lll}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{r}
\end{array}\right]\left[\begin{array}{c}
v_{1}^{T} \\
\vdots \\
v_{r}^{T}
\end{array}\right]
$$

Add extra columns to U and V, and add zero rows/cols to Σ_{1}

Full SVD

- find $U_{2} \in \mathbb{R}^{m \times(m-r)}$ such that $U=\left[\begin{array}{ll}U_{1} & U_{2}\end{array}\right] \in \mathbb{R}^{m \times m}$ is orthogonal
- find $V_{2} \in \mathbb{R}^{n \times(n-r)}$ such that $V=\left[\begin{array}{ll}V_{1} & V_{2}\end{array}\right] \in \mathbb{R}^{n \times n}$ is orthogonal
- add zero rows/cols to Σ_{1} to form $\Sigma \in \mathbb{R}^{m \times n}$

$$
\Sigma=\left[\begin{array}{c|c}
\Sigma_{i} & 0_{r \times(n-r)} \\
\hline 0_{(m-r) \times r} & 0_{(m-r) \times(n-r)}
\end{array}\right]
$$

then the full SVD is

$$
A=U_{1} \Sigma_{1} V_{1}^{T}=\left[\begin{array}{l|l}
U_{1} \mid U_{2}
\end{array}\right]\left[\begin{array}{c|c}
\Sigma_{i} & 0_{r \times(n-r)} \\
\hline 0_{(m-r) \times r} & 0_{(m-r) \times(n-r)}
\end{array}\right]\left[\begin{array}{c}
V_{1}^{T} \\
\hline V_{2}^{T}
\end{array}\right]
$$

which is $A=U \Sigma V^{T}$

Image of Unit Ball under Linear Transformation

full SVD:

$$
A=U \Sigma V^{T}
$$

gives interpretation of $y=A x$

- rotate (by V^{T})
- stretch along axes by $\sigma_{i}\left(\sigma_{i}=0\right.$ for $\left.i>r\right)$
- zero-pad (if $m>n$) or truncate (if $m<n$) to get m-vector
- rotate (by U)

Outline

- Geometry of Linear Algebra
- Vector spaces
- Basis, dimension
- Nullspace, range
- Spectral Decomposition
- Eigenpairs
- Spectral theory
- Singular Value Decomposition
- Geometry of linear maps
- Singular values, singular vectors
- Pseudo-inverse
- Matrix Calculus
- Gradient

Matrix Calculus - the Gradient (first-order derivative)

- let a function $f: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ take as input a matrix A of size $m \times n$ and returns a real value
- then the gradient of f :

$$
\nabla_{A} f(A) \in \mathbb{R}^{m \times n}=\left[\begin{array}{cccc}
\frac{\partial f(A)}{\partial A_{11}} & \frac{\partial f(A)}{\partial A_{12}} & \ldots & \frac{\partial f(A)}{\partial A_{1 n}} \\
\frac{\partial f(A)}{\partial A_{21}} & \frac{\partial f(A)}{\partial A_{22}} & \ldots & \frac{\partial f(A)}{\partial A_{2 n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f(A)}{\partial A_{m 1}} & \frac{\partial f(A)}{\partial A_{m 2}} & \ldots & \frac{\partial f(A)}{\partial A_{m n}}
\end{array}\right]
$$

i.e., an $m \times n$ matrix with

$$
\left(\nabla_{i j} f(A)\right)_{i j}=\frac{\partial f(A)}{\partial A_{i j}}
$$

- vectors are $m \times 1$ matrices

Matrix Calculus - the Gradient (first-order derivative)

Gradient operator ∇ is linear:

- $\nabla_{x}(f(x)+g(x))=\nabla_{x} f(x)+\nabla_{x} g(x)$
- For $t \in \mathbb{R}, \nabla_{x}(t f(x))=t \nabla_{x} f(x)$

Matrix Calculus - the Hessian (second-order derivative)

- Consider a vector function $f(x)$ defined as $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. The Hessian w.r.t x is an $n \times n$ matrix:

$$
\nabla f(x) \in \mathbb{R}^{n \times n}=\left[\begin{array}{cccc}
\frac{\partial^{2} f(x)}{\partial x_{1}^{2}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial^{2} x_{2}^{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{n}^{2}}
\end{array}\right]
$$

- In other words,

$$
\left(\nabla_{x}^{2} f(x)\right)_{i j}=\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}
$$

- Note that Hessian is always symmetric since

$$
\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} f(x)}{\partial x_{j} \partial x_{i}}
$$

Gradients of Quadratic Vector Functions

- Consider a quadratic function $f(x)=x^{T} A x$ for $A \in \mathbb{S}$. Remember that

$$
f(x)=\sum_{i} \sum_{j} A_{i j} x_{i} x_{j}
$$

- If you take partial derivative, after calculation, we will have

$$
\frac{\partial f(x)}{\partial x_{k}}=2 \sum_{i=1}^{n} A_{k i} x_{i}
$$

- This result can be written compactly in matrix form:

$$
\nabla_{x} f(x)=2 A x
$$

Hessian of Quadratic Vector Functions

- Let's look at the Hessian of the quadratic function $f(x)=x^{T} A x$

$$
\frac{\partial^{2} f(x)}{\partial x_{k} \partial x_{l}}=\frac{\partial}{\partial x_{k}}\left[\frac{\partial f(x)}{\partial x_{l}}\right]=2 A_{l k}=2 A_{k l}
$$

- Matrix form: $\nabla_{x} x^{\top} A x=2 A$

Summary of Matrix Calculus

- $\nabla_{x} b^{T} x=b$
- $\nabla_{x}^{2} b^{\top} x=0$
- $\nabla_{x} x^{T} A x=A x+A^{T} x$ (if A not symmetric)
- $\nabla_{x} x^{\top} A x=2 A x$ (if A symmetric)
- $\nabla_{x} x^{\top} A x=A+A^{T}$ (if A not symmetric)
- $\nabla_{x} x^{T} A x=2 A$ (if A symmetric)

