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Basic Numerical Optimization

Note: the slides are based on EE263 at Stanford. Reorganized, revised, and typed by Hao Su
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Outline

I Least-squares
I least-squares (approximate) solution of overdetermined equations
I least-norm solution of underdetermined equations
I unified solution form by SVD

I Low-rank Approximation
I eigenface problem
I principal component analysis
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Example Application: Line Fitting

I Given {(xi , yi )}, find line through them.
i.e., find a and b in y = ax + b

I Using matrix and vectors, we look for a and b such that
y1

y2

...
yn

 ≈

x1 1
x2 1
...

...
xn 1


[
a
b

]
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Overdetermined Linear Equations

I consider y = Ax where A ∈ Rm×n is (strictly) skinny, i.e., m > n
I called overdetermined set of linear equations (more equations than

unknowns)
I for most y , cannot solve for x

I one approach to approximately solve y = Ax :
I define residual or error r = Ax − y
I find x = xls that minimize ‖r‖

I xls called least-squares (approximate) solution of y = Ax
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Geometric Interpretation

Given y ∈ Rm, find x ∈ Rn to minimize ‖Ax − y‖

Axls is point in range(A) closest to y (Axls is projection of y onto range(A))
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Least-squares (approximate) Solution

I assume A is full rank, skinny

I to find xls , we’ll minimize norm of residual squared,

‖r‖2 = xTATAx − 2yTAx + yT y

I set gradient w.r.t. x to zero:

∇x‖r‖2 = 2ATAx − 2AT y = 0

I yields the normal equation: ATAx = AT y

I assumptions imply ATA invertible, so we have

xls = (ATA)−1AT y

. . . a very famous formula
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Least-squares (approximate) Solution

I xls is linear function of y

I xls = A−1y if A is square

I xls solves y = Axls if y ∈ range(A)
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Least-squares (approximate) Solution

for A skinny and full rank, the pseudo-inverse of A is

A† = (ATA)−1AT

I for A skinny and full rank, A† is a left inverse of A

A†A = (ATA)−1ATA = I

I if A is not skinny and full rank then A† has a different definition
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Underdetermined Linear Equations

I consider y = Ax where A ∈ Rm×n is (strictly) fat, i.e., m < n
I called underdetermined set of linear equations

(more unknowns than equations)
I the solution may not be unique

I we find a specific solution to y = Ax and the null space of A:

minimize
x

1

2
‖x‖2

s.t. y = Ax

I this is called the least-norm solution
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Least-norm Solution

minimize
x

1

2
‖x‖2

s.t. y = Ax

I assume A is full (row-)rank, fat

I we use Lagrangian multiplier method to solve x :

L(x , λ) =
1

2
‖x‖2 − λT (y − Ax)

∇xL(x , λ) = x − ATλ

Set ∇xL(x , λ) = 0, we have x = ATλ, so y = Ax = AATλ
Note that A is fat and full rank, so AAT invertible
So, λ = (AAT )−1y By x = ATλ, we have

x = AT (AAT )−1y
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Least-norm Solution

for A fat and full rank, the pseudo-inverse of A is

A† = AT (AAT )−1

I for A fat and full rank, A† is a right inverse of A

AA† = AAT (AAT )−1 = I
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Unifying least-square and least-norm solutions by SVD

Let the SVD decomposition of A be A = UΣV T (the economic form of Σ that
all the diagonals are non-zero).

I For skinny matrix, the least-square solution:
x = (ATA)−1AT y = VΣ−1UT y

I For fat matrix, the least-norm solution:
x = AT (AAT )−1y = VΣ−1UT y

Solution to linear equation system y = Ax

x = VΣ−1UT y

Note:

I For least-norm solution, x = VΣ−1UT y is a special solution

I Ex: how to obtain all the solutions? (Hint: the null space of UT )
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Example Application: Face Retrieval

Suppose you have 10 million face images,
Question:

I How can you find the 5 faces closest to a query (maybe yours!) in just 0.1
sec?

I How can you show all of them in a single picture?

I SVD can help you do it!
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Data as Points in a Euclidean Space

I While data can be represented as
high-dimensional vectors

I Lower-dimensional structure is often
present in data
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The Space of All Face Images

I When viewed as vectors of pixel values, face images are extremely
high-dimensional
I 100× 100 image=10, 000 dims
I Slow and lots of storage is needed

I But very few 10, 000-dimensional vectors are valid face images

I We want to effectively model the subspace of face images
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Low-Dimensional Face Space
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Reconstruction Formulation

I Data matrix of face images: X =


xT

1

xT
2

. . .

xT
n

 ∈ Rn×m, each row is a face image

I Orthonormal basis of the face subspace: F =


f T1
f T2
. . .

f Tr

 ∈ Rr×m, r << m

I Face coordinates: W =


wT

1

wT
2

. . .

wT
n

 ∈ Rn×r

I Reconstruction: X̂ = WF + µ, where µ ∈ Rn×m replicates the mean face
vector at each row.
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Optimization Formulation of Face Subspace Learning

I Frobenius norm of a matrix: ‖X‖F =
√∑

ij x
2
ij

I We use ‖ · ‖F to measure X ≈ X̂ :

‖X − X̂‖2
F = ‖X − (WF + µ)‖2

F = ‖(X − µ)−WF‖2
F

I Let D = X − µ, we have an optimization problem:

minimize
W∈Rn×r ,F∈Rr×m

‖D −WF‖2
F

I We do not know how to obtain the global minimum of the above problem
(non-convex); however, we can solve the following equivalent problem:

minimize
D̂

‖D − D̂‖2
F

s.t. rank(D̂) ≤ r
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Low-rank Approximation Theorem

minimize
D̂

‖D − D̂‖2
F

s.t. rank(D̂) ≤ r

I Let D = UΣV T ∈ Rn×m, n ≥ m be the singular value decomposition of D
and partition U, Σ, and V as follows:

U = [U1 U2],Σ =

[
Σ1 0
0 Σ2

]
,V = [V1,V2],

where U1 ∈ Rm×r , Σ1 ∈ Rr×r , and V1 ∈ Rn×r .

I Then the solution is
D̂ = U1Σ1V

T
1
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Principal Component Analysis

SVD for the eigenface problem

Let W = U1Σ1 and F = V T
1

This is a general dimension reduction technique!
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Principal Component Analysis (SVD version)

Goal: Find r -dim projection that best preserves data

1. Compute mean vector µ

2. Subtract µ from data matrix

3. SVD and select top r right-singular vectors

4. Project points onto the subspace spanned by them
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Reconstruction Results for Faces

I after computing eigenfaces using 400 face images from ORL face database
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Homework: PCA for 2D plane detection in 3D point cloud
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Review: Three Optimization Problems We Learned Today

Least-square (overdetermined)

minimize
x

‖Ax − y‖2
(1)

Least-square (underdetermined)

minimize
x

‖x‖2

s.t. Ax = y
(2)

Low-rank Approximation (underdetermined)

minimize
D̂

‖D − D̂‖2
F

s.t. rank(D̂) ≤ r
(3)
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Gradient Descent

Least-square (overdetermined)

minimize
x

‖Ax − y‖2
(4)

Closed form solution: x = A†y

We can also use gradient descent to optimize the problem:

xn = xn−1 − α∇f (xn−1)
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Congrats!

You have done the warm-up job for analyzing pictures!



30/32

Appendix: Principal Component Analysis (Covariance Version)

Goal: Find r -dim projection that best preserves data

1. Compute mean vector µ

2. Subtract µ from data matrix: D = X −

µ
T

...
µT


3. Build co-variance matrix C = 1

n−1
DTD

4. Eigen decompositon of C and select top r eigenvectors

5. Project points onto the subspace spanned by them.
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Appendix: Statistical Interpretation of PCA

I Commonly used for dimension reduction

I Project each data point onto only the first few principal components to
obtain lower-dimensional data while preserving as much of the data’s
variation as possible

I The first principal component can equivalently be defined as a direction
that maximizes the variance of the projected data

I The i th principal component can be taken as a direction orthogonal to the
first i − 1 principal components that maximizes the variance of the
projected data
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Appendix: Visualization of PCA

PCA of a multivariate Gaussian distribution centered at (1, 3) with a standard
deviation of 3 in roughly the (0.866, 0.5) direction and of 1 in the orthogonal
direction. The vectors shown are the eigenvectors of the covariance matrix
scaled by the square root of the corresponding eigenvalue, and shifted so their
tails are at the mean.
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