CSE 152: Computer Vision Hao Su

Light and Shading

Credit: Derek Hoiem, UIUC

How light is recorded

Digital camera

A digital camera replaces film with a sensor array

- Each cell in the array is light-sensitive diode that converts photons to electrons
- Two common types: Charge Coupled Device (CCD) and CMOS
- <u>http://electronics.howstuffworks.com/digital-camera.htm</u>

Sensor Array

CMOS sensor

a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

Each sensor cell records amount of light coming in at a small range of orientations

The raster image (pixel matrix)

The raster image (pixel matrix)

Today's class: Light and Shading

- What determines a pixel's intensity?
- What can we infer about the scene from pixel intensities?

How does a pixel get its value?

How does a pixel get its value?

- Major factors
 - Illumination strength and direction
 - Surface geometry
 - Surface material
 - Nearby surfaces
 - Camera gain/exposure

Basic models of reflection

• Specular: light bounces off at the incident angle

- Diffuse: light scatters in all directions
 - E.g., brick, cloth, rough wood

Lambertian reflectance model

- Some light is absorbed (function of albedo ρ)
- Remaining light is scattered (diffuse reflection)
- Examples: soft cloth, concrete, matte paints

Diffuse reflection: Lambert's cosine law

Intensity does not depend on viewer angle.

- Amount of reflected light proportional to $\cos(\theta)$
- Visible solid angle also proportional to $\cos(\theta)$

Specular Reflection

- Reflected direction depends on light orientation and surface normal
 - E.g., mirrors are fully specular
 - Most surfaces can be modeled with a mixture of diffuse and specular components

Flickr, by suzysputnik

Flickr, by piratejohnny

Most surfaces have both specular and diffuse components

 Specularity = spot where specular reflection dominates (typically reflects light source)

Typically, specular component is small

Photo: northcountryhardwoodfloors.com

Intensity and Surface Orientation

Intensity depends on illumination angle because less light comes in at oblique angles.

- ho= albedo
- S = directional source
- N = surface normal
- I = reflected intensity

 $I(x) = \rho(x) \big(\boldsymbol{S} \cdot \boldsymbol{N}(x) \big)$

Recap

- When light hits a typical surface
 - Some light is absorbed (1- ρ)
 - More absorbed for low albedos
 - Some light is reflected diffusely
 - Independent of viewing direction

- Some light is reflected specularly
 - Light bounces off (like a mirror), depends on viewing direction

Other possible effects

Application: photometric stereo

- Assume:
 - a set of point sources that are infinitely distant
 - a set of pictures of an object, obtained in exactly the same camera/object configuration but using different sources
 - A Lambertian object (or the specular component has been identified and removed)

Photometric stereo slides by Forsyth

Intensity for pixel Source *i* direction and strength Each image is: $I_i(x) = S_i \cdot (\rho(x)N(x))$

So if we have enough images with known sources, we can solve for $B(x) = \rho(x)N(x)$

albedo times 3D normal vector

 $\boldsymbol{B}(x) = \rho(x)\boldsymbol{N}(x)$

And the albedo (shown here) is given by:

$$\rho(x) = \sqrt{\boldsymbol{B}(x) \cdot \boldsymbol{B}(x)}$$

(the normal is a unit vector)

Dynamic range and camera response

 Typical scenes have a huge dynamic range

- Camera response is roughly linear in the mid range (15 to 240) but non-linear at the extremes
 - called saturation or undersaturation

Log Exposure (-Target density)

Color

Light is composed of a spectrum of wavelengths

Some examples of the spectra of light sources

© Stephen E. Palmer, 2002

Some examples of the <u>reflectance</u> spectra of <u>surfaces</u>

The color of objects

- Colored light arriving at the camera involves two effects
 - The color of the light source (illumination + inter-reflections)
 - The color of the surface

Color Sensing: Bayer Grid

http://en.wikipedia.org/wiki/Bayer_filter

Color Image

G

В

Why RGB?

If light is a spectrum, why are images RGB?

Human color receptors

- Long (red), Medium (green), and Short (blue) cones, plus intensity rods
- Fun facts
 - "M" and "L" on the X-chromosome
 - That's why men are more likely to be color blind (see what it's like: <u>http://www.vischeck.com/vischeck/vischeckImage.php</u>)
 - "L" has high variation, so some women are tetrachromatic
 - Some animals have 1 (night animals), 2 (e.g., dogs), 4 (fish, birds), 5 (pigeons, some reptiles/amphibians), or even 12 (mantis shrimp) types of cones

http://en.wikipedia.org/wiki/Color_vision

So far: light→surface→camera

- Called a local illumination model
- But much light comes from surrounding surfaces

From Koenderink slides on image texture and the flow of light

Inter-reflection is a major source of light

Inter-reflection affects the apparent color of objects

From Koenderink slides on image texture and the flow of light

Scene surfaces also cause shadows

 Shadow: reduction in intensity due to a blocked source

Shadows

Models of light sources

- Distant point source
 - One illumination direction
 - E.g., sun
- Area source
 - E.g., white walls, diffuse lamps, sky
- Ambient light
 - Substitute for dealing with interreflections
- Global illumination model
 - Account for interreflections in modeled scene

What does the intensity of a pixel tell us?

im(234, 452) = 0.58

0.92	0.93	0.94	0.97	0.62	0.37	0.85	0.97	0.93	0.92	0.99
0.95	0.89	0.82	0.89	0.56	0.31	0.75	0.92	0.81	0.95	0.91
0.89	0.72	0.51	0.55	0.51	0.42	0.57	0.41	0.49	0.91	0.92
0.96	0.95	0.88	0.94	0.56	0.46	0.91	0.87	0.90	0.97	0.95
0.71	0.81	0.81	0.87	0.57	0.37	0.80	0.88	0.89	0.79	0.85
0.49	0.62	0.60	0.58	0.50	0.60	0.58	0.50	0.61	0.45	0.33
0.86	0.84	0.74	0.58	0.51	0.39	0.73	0.92	0.91	0.49	0.74
0.96	0.67	0.54	0.85	0.48	0.37	0.88	0.90	0.94	0.82	0.93
0.69	0.49	0.56	0.66	0.43	0.42	0.77	0.73	0.71	0.90	0.99
0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97
0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93

7

The plight of the poor pixel

- A pixel's brightness is determined by
 - Light source (strength, direction, color)
 - Surface orientation
 - Surface material and albedo
 - Reflected light and shadows from surrounding surfaces
 - Gain on the sensor
- A pixel's brightness tells us nothing by itself

And yet we can interpret images...

- Key idea: for nearby scene points, most factors do not change much
- The information is mainly contained in *local differences* of brightness

Large Difference in Neighboring Pixels

What is this?

What differences in intensity tell us about shape

- Changes in surface normal
- Texture
- Proximity
- Indents and bumps
- Grooves and creases

Photos Koenderink slides on image texture and the flow of light

Color constancy

- Interpret surface in terms of albedo or "true color", rather than observed intensity
 - Humans are good at it
 - Computers are not nearly as good

Perception of Intensity

from Ted Adelson

Perception of Intensity

from Ted Adelson

Things to remember

- Important terms: diffuse/specular reflectance, albedo, umbra/penumbra
- Observed intensity depends on light sources, geometry/material of reflecting surface, surrounding objects, camera settings
- Objects cast light and shadows on each other
- Differences in intensity are primary cues for shape

