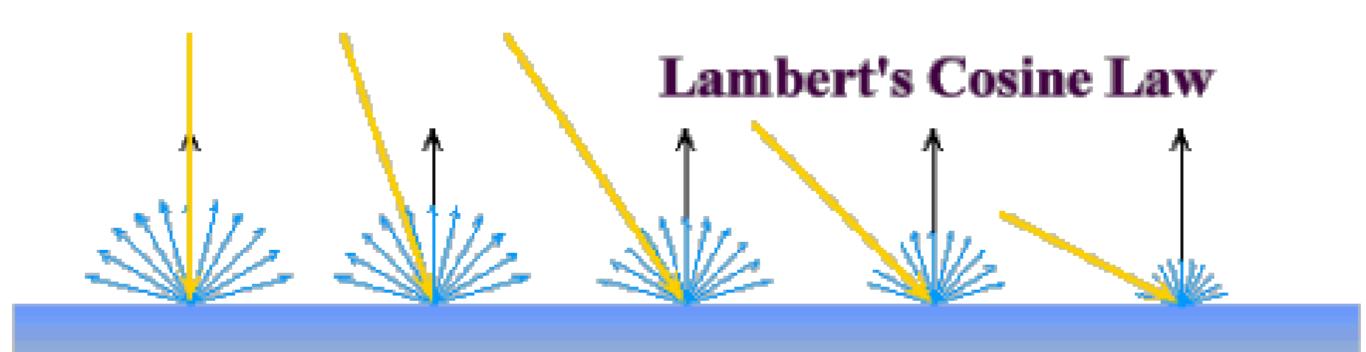
CSE 152: Computer Vision Hao Su

Filters and Features

Diffuse reflection: Lambert's cosine law

Intensity does not depend on viewer angle.

- Amount of reflected light proportional to $cos(\theta)$
- Visible solid angle also proportional to $\cos(\theta)$

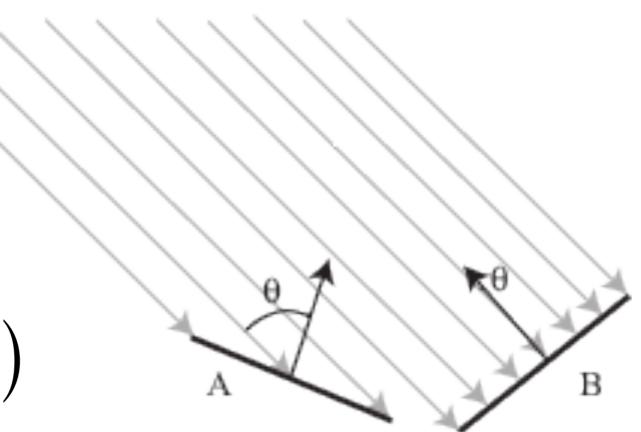


Intensity and Surface Orientation

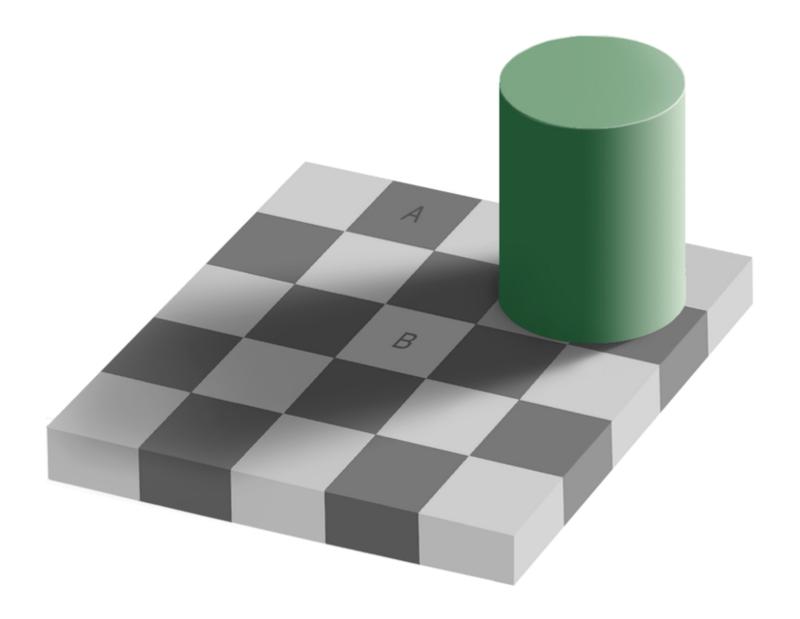
Intensity depends on illumination angle because less light comes in at oblique angles.

- $\rho = albedo$
- S = directional source
- *N* = surface normal
- I = reflected intensity

 $I(x) = \rho(x) \big(\boldsymbol{S} \cdot \boldsymbol{N}(x) \big)$

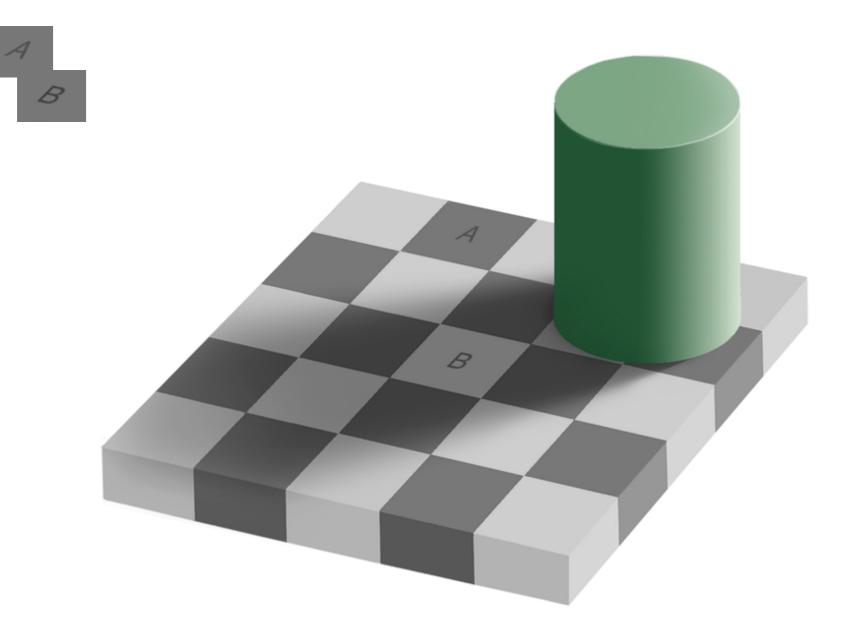


Perception of Intensity



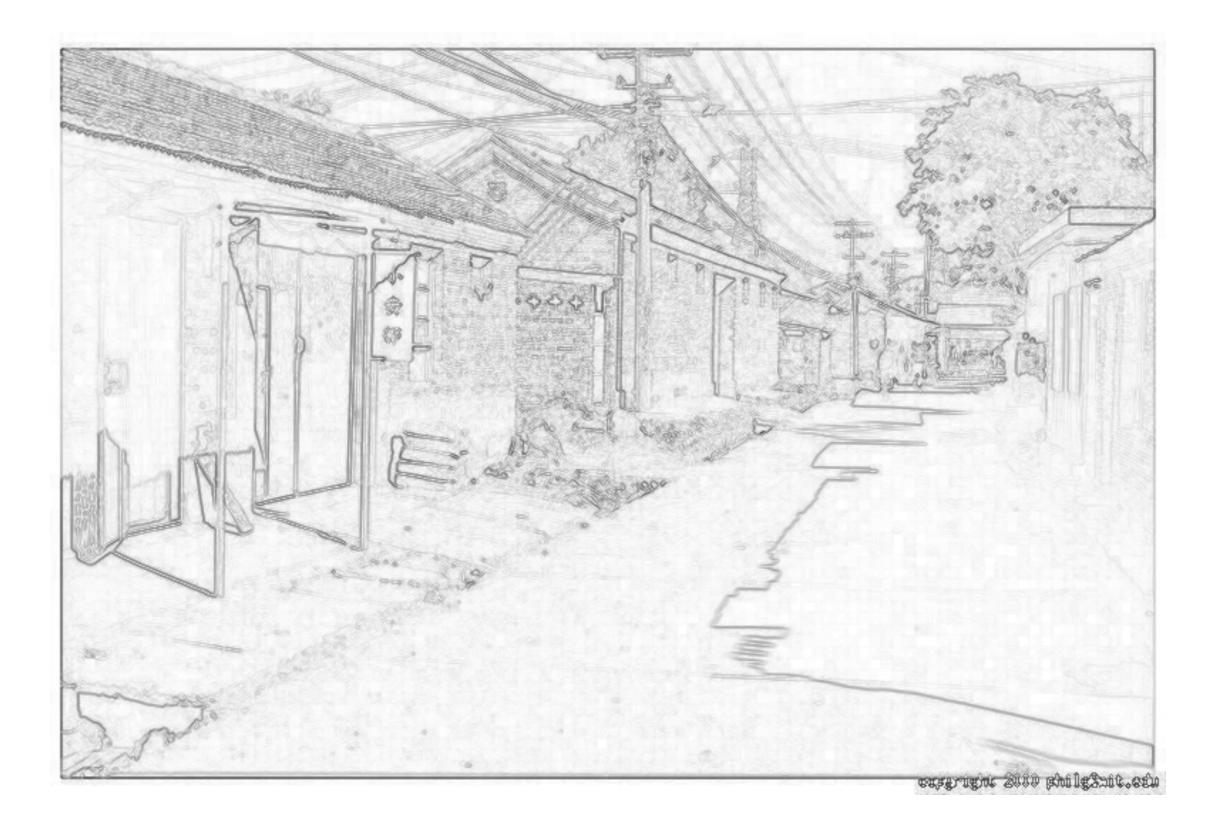
from Ted Adelso

Perception of Intensity



from Ted Adelso

Darkness = Large Difference in Neighboring Pixels



Why should we care?

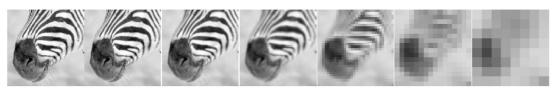
Input

Smoothing

Sharpening

https://en.wikipedia.org/wiki/Albert_Einstein_in_popular_culture#/media/ File:Einstein_tongue.jpg

Why should we care?



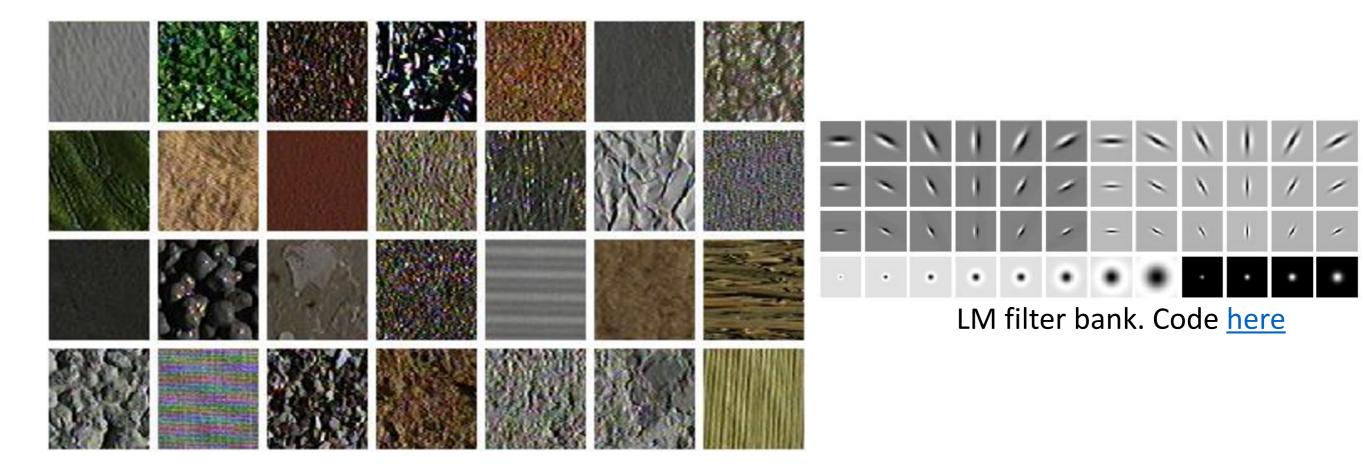
512 256 128 64 32 16 8

Image interpolation/resampling Source: N Shavely

Image Pyramid

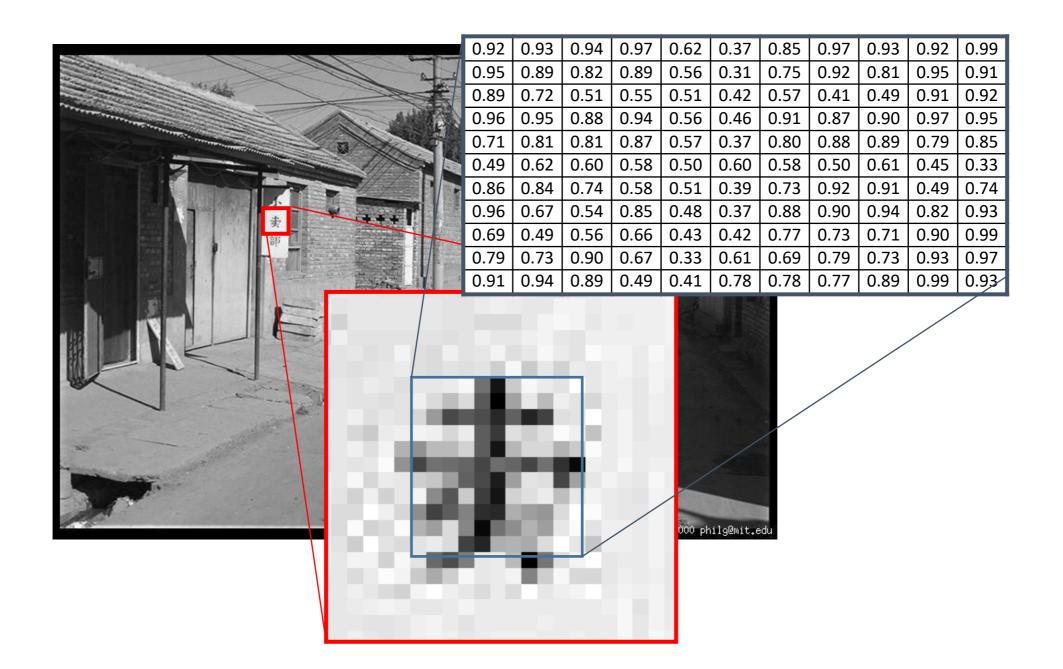
Source: D Forsyth

Why should we care?



Representing textures with filter banks

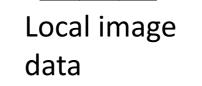
The raster image (pixel matrix)



- For each pixel, compute function of local neighborhood and output a new value
 - Same function applied at each position
 - Output and input image are typically the same size

- Linear filtering
 - function is a weighted sum/difference of pixel values

- Enhance images
 - Denoise, smooth, increase contrast, etc.
- Extract information from images
 - Texture, edges, distinctive points, etc.
- Detect patterns
 - Template matching



5

6

1

3

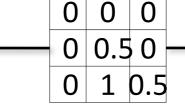
1

8

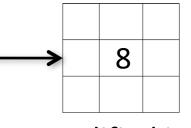
10

4

1



kernel



Modified image data

Question: Noise reduction

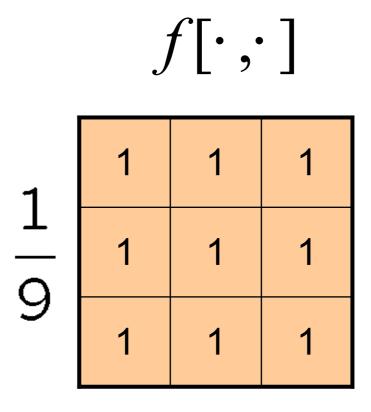
• Given a camera and a still scene, how can you reduce noise?

Take lots of images and average them! What's the next best thing?

First attempt at a solution

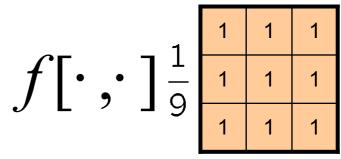
- Let's replace each pixel with an average of all the values in its neighborhood
- Assumptions:
 - Expect pixels to be like their neighbors
 - Expect noise processes to be independent from pixel to pixel

Example: box filter

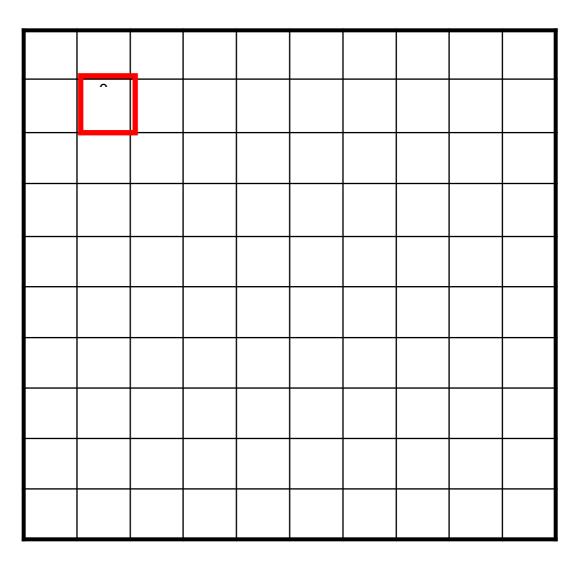


Slide credit: David Lowe (UBC)

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

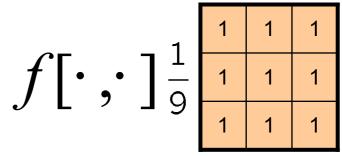


h[.,.]

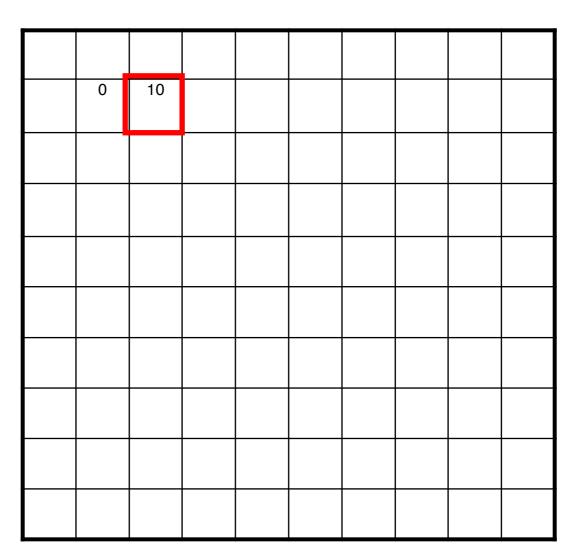


 $h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$

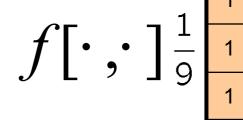
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0



h[.,.]



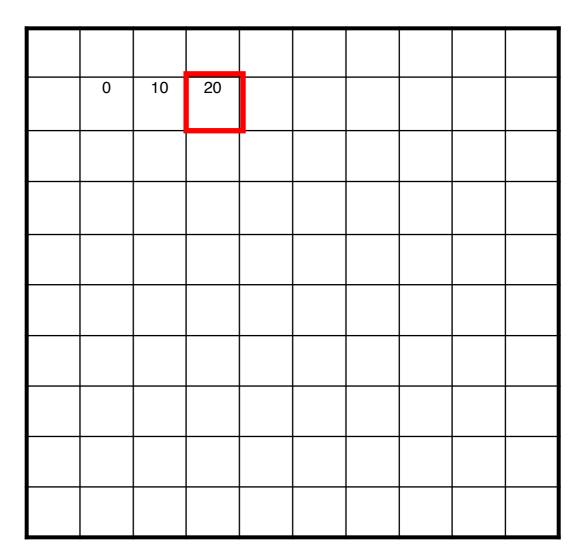
 $h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$



1	1	1	1
- 	1	1	1
9	1	1	1

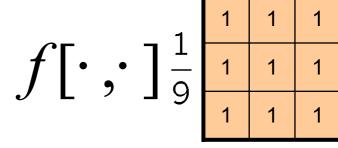
I[.,.]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0



h[.,.]

 $h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$



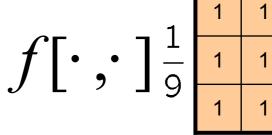
I[.,.]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30			

h[.,.]

 $h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$



1	1	1	1
- T	1	1	1
9	1	1	1

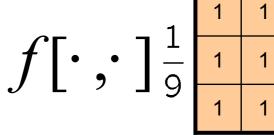
I|.,|

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30		

h[.,.]

 $h[m,n] = \sum_{k=1}^{\infty} f[k,l] I[m+k,n+l]$



1	1	1	1
	1	1	1
9	1	1	1

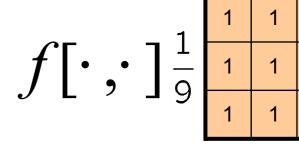
I|.,|

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	U	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30		
			?			

h[.,.]

 $h[m,n] = \sum_{k=1}^{\infty} f[k,l] I[m+k,n+l]$



1

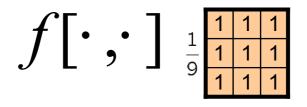
I[.,.]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30			
					?		
			50				

h[.,.]

 $h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$



I[.,.]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

h[.,.]

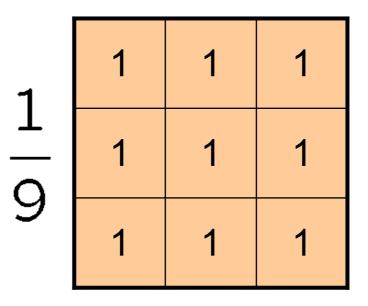
0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

 $h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$

Box Filter

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)



Smoothing with box filter

Properties of smoothing filters

<u>Smoothing</u>

- Values positive
- Sum to 1 \rightarrow constant regions same as input
- Amount of smoothing proportional to mask size
- Remove "high-frequency" components; "low-pass" filter

Correlation filtering

Say the averaging window size is 2k+1 x 2k+1:

$$G[i,j] = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u,j+v]$$

AttributeLoop over all pixels inuniform weightneighborhood around imageto each pixelpixel F[i,j]

Now generalize to allow different weights depending on neighboring pixel's relative position:

$$G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v]$$

$$K_{i} = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v]$$

$$K_{i} = \sum_{u=-k}^{k} F[i + u, j + v]$$

Correlation filtering

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

This is called cross-correlation, denoted $G = H \otimes F$

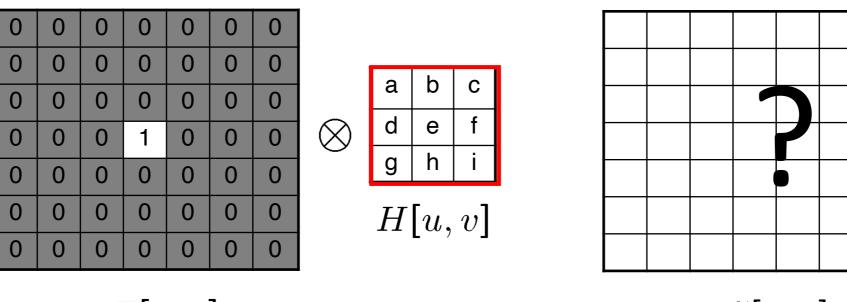
Filtering an image: replace each pixel with a linear combination of its neighbors.

The filter "kernel" or "mask" H[u,v] is the prescription for the weights in the linear combination.

Slide credit: Kristen Grauman

Filtering an impulse signal

What is the result of filtering the impulse signal (image) *F* with the arbitrary kernel *H*?



F[x, y]

G[x, y]

Convolution

- Convolution:
 - Flip the filter in both dimensions (bottom to top, right to left)
 - Then apply cross-correlation

Convolution vs. correlation

Convolution

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v] \qquad G=conv2(H,F);$$

$$G = H \star F$$

Cross-correlation

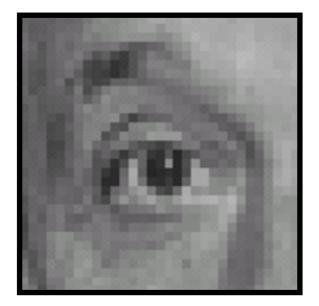
$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v] \qquad \qquad \text{G=filter2(H,F); Or} \\ G=\text{imfilter(F,H);}$$

 $G = H \otimes F$ For a Gaussian or box filter, how will the outputs differ? If the input is an impulse signal, how will the outputs differ?

000010000

?

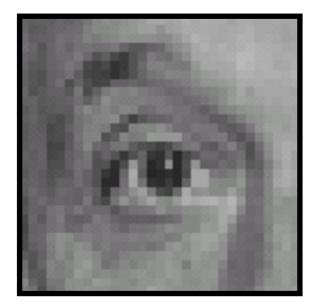
Original



Original

0	0	0
0	1	0
0	0	0

Filtered (no change)

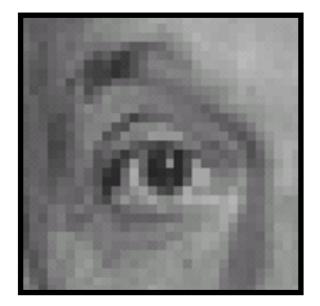


000001000

?

Original

Source: D. Lowe

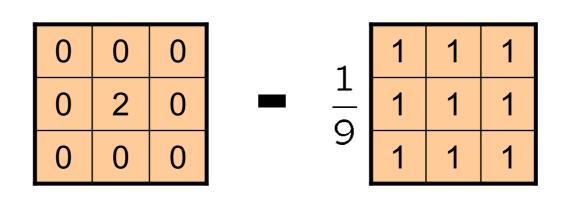


Original

0	0	0
0	0	1
0	0	0



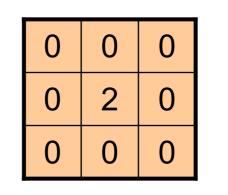
Shifted left By 1 pixel

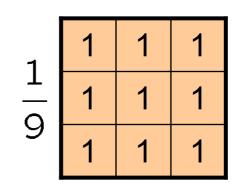


(Note that filter sums to 1)

Original

Practice with linear filters



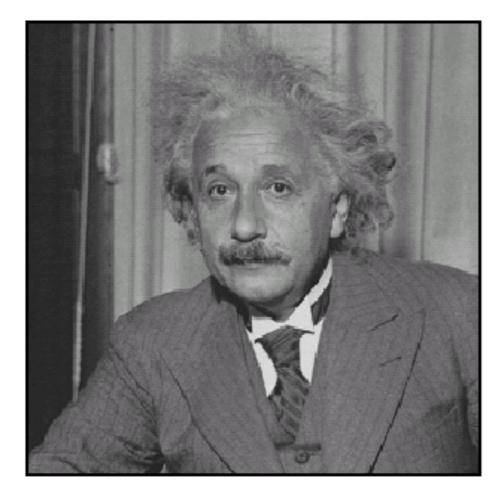


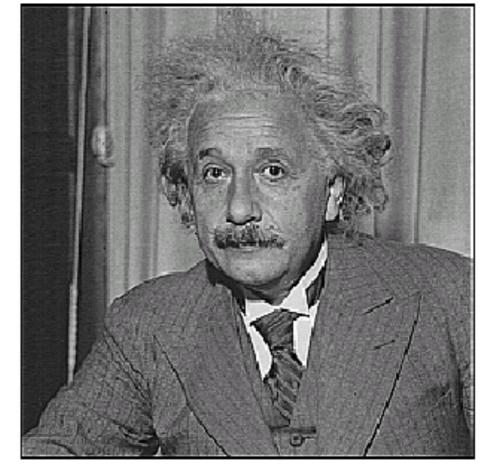
Original

Sharpening filter

- Accentuates differences with local average

Sharpening

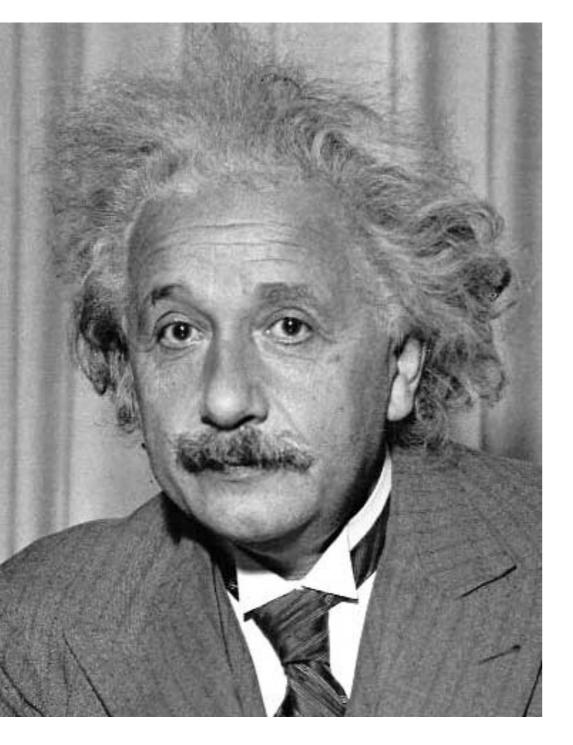




before

after

Other filters

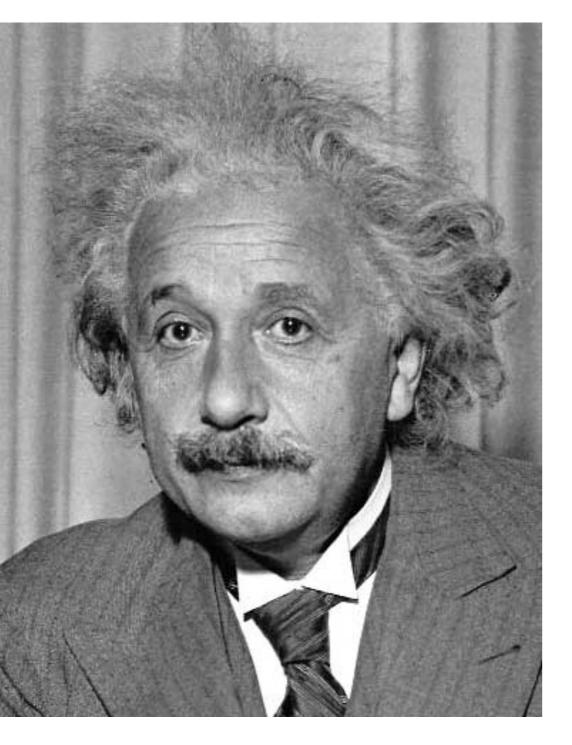


1	0	-1
2	0	-2
1	0	-1

Sobel

Vertical Edge (absolute value)

Other filters



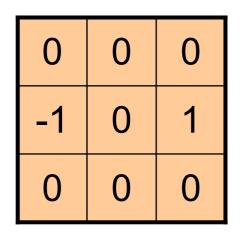
1	2	1
0	0	0
-1	-2	-1

Sobel

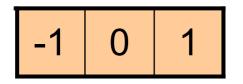
Horizontal Edge (absolute value)

Basic gradient filters

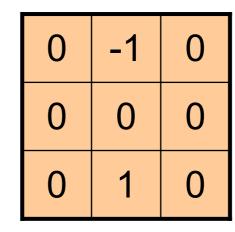
Horizontal Gradient



or



Vertical Gradient



-1 0 1

or

Filtering vs. Convolution

2d filtering
 h=tf.nn.conv2d(f,g,...);

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

• 2d convolution

$$h[m,n] = \sum_{k,l} g[k,l] f[m-k,n-l]$$

Key properties of linear filters

Linearity:

filter($f_1 + f_2$) = filter(f_1) + filter(f_2)

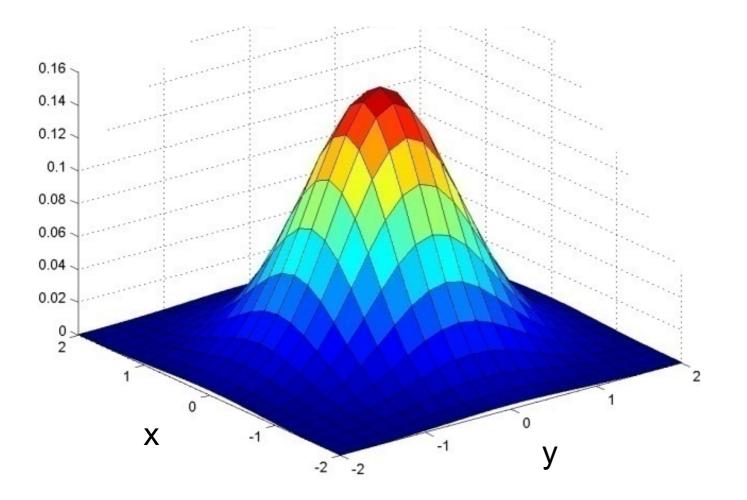
Shift invariance: same behavior regardless of pixel location
filter(shift(f)) = shift(filter(f))

Any linear, shift-invariant operator can be represented as a convolution

Source: S. Lazebnik

Important filter: Gaussian

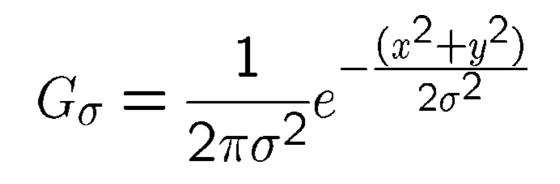
• Weight contributions of neighboring pixels by nearness



_		

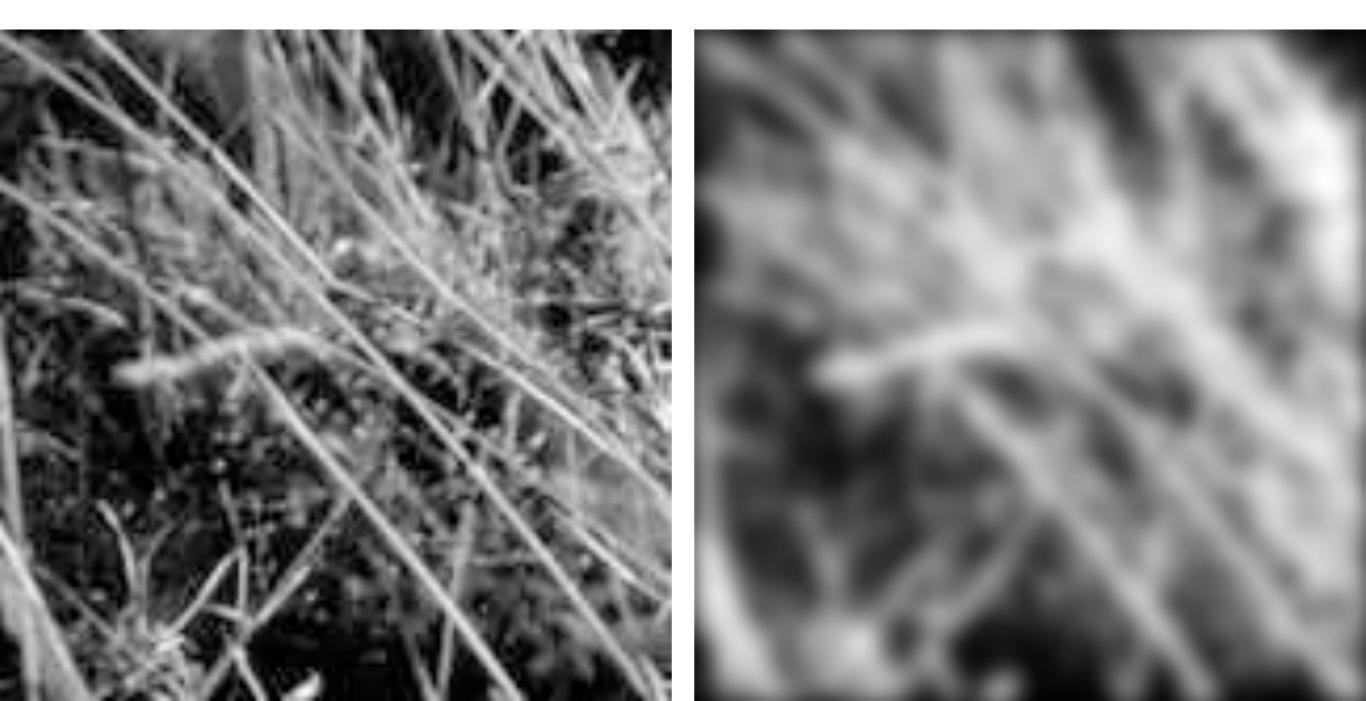
			Х		
	0.003	0.013	0.022	0.013	0.003
	0.013	0.059	0.097	0.059	0.013
У	0.022	0.097	0.159	0.097	0.022
	0.013	0.059	0.097	0.059	0.013
	0.003	0.013	0.022	0.013	0.003
	L				

5 x 5, σ = 1



Slide credit: Christopher Rasmussen

Smoothing with Gaussian filter

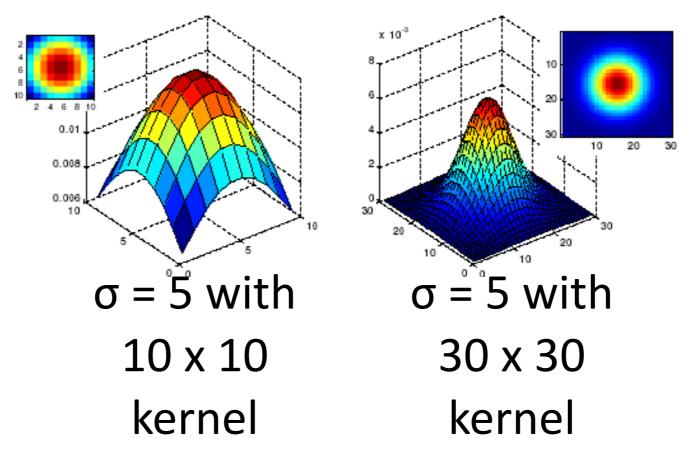


Gaussian filters

- Remove "high-frequency" components from the image (low-pass filter)
 - Images become more smooth
- Convolution with self is another Gaussian
 - So can smooth with small-width kernel, repeat, and get same result as larger-width kernel would have
 - Convolving two times with Gaussian kernel of width σ is same as convolving once with kernel of width $\,\sigma\sqrt{2}\,$

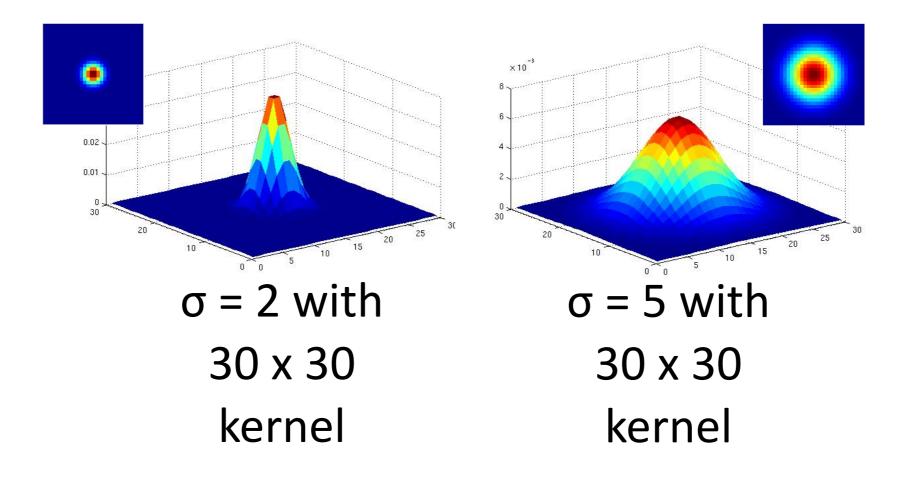
Gaussian filters

- What parameters matter here?
- Size of kernel or mask
 - Note, Gaussian function has infinite support, but discrete filters use finite kernels



Gaussian filters

- What parameters matter here?
- Variance of Gaussian: determines extent of smoothing



Practical matters

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

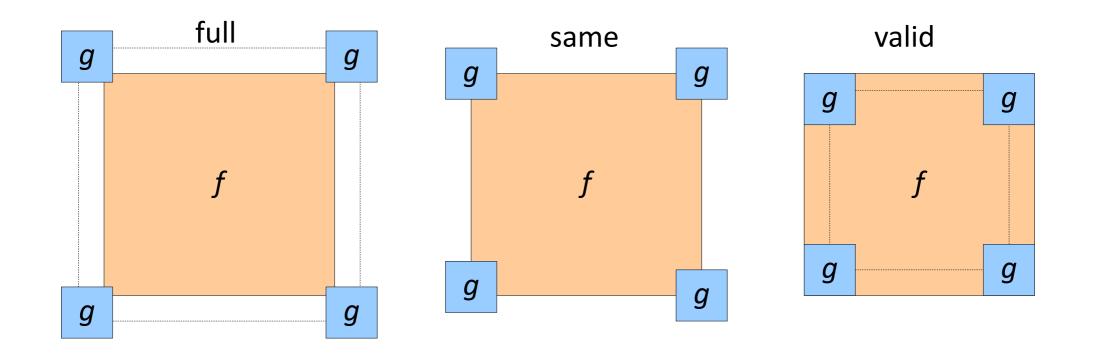
Practical matters

• methods (MATLAB):

- clip filter (black):
- copy edge:
- reflect across edge:
- imfilter(f, g, 0)
- imfilter(f, g, 'replicate')
- imfilter(f, g, 'symmetric')

Practical matters

- What is the size of the output?
- MATLAB: filter2(g, f, shape)
 - *shape* = 'full': output size is sum of sizes of f and g
 - *shape* = 'same': output size is same as f
 - shape = 'valid': output size is difference of sizes of f and g

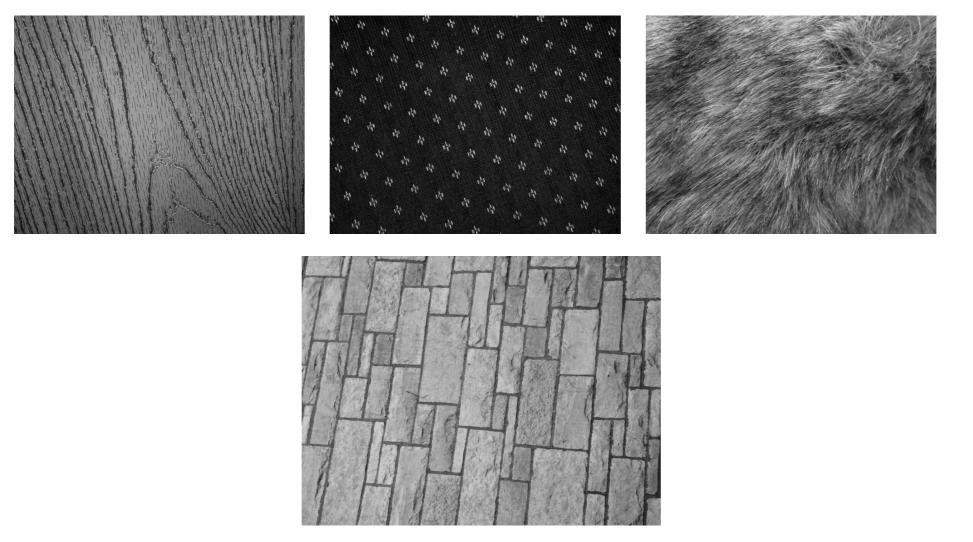


2-mins break

Application: Representing Texture

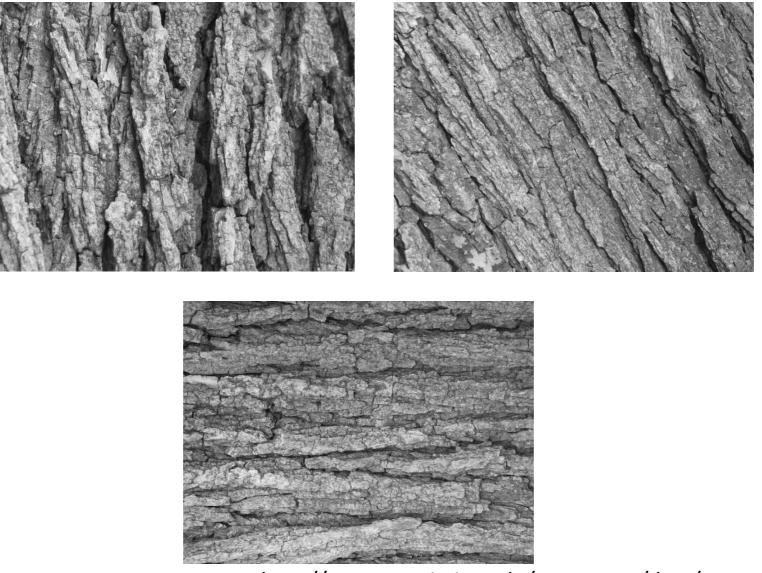
Source: Forsyth

Texture and Material



http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/

Texture and Orientation



http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/

Texture and Scale

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/

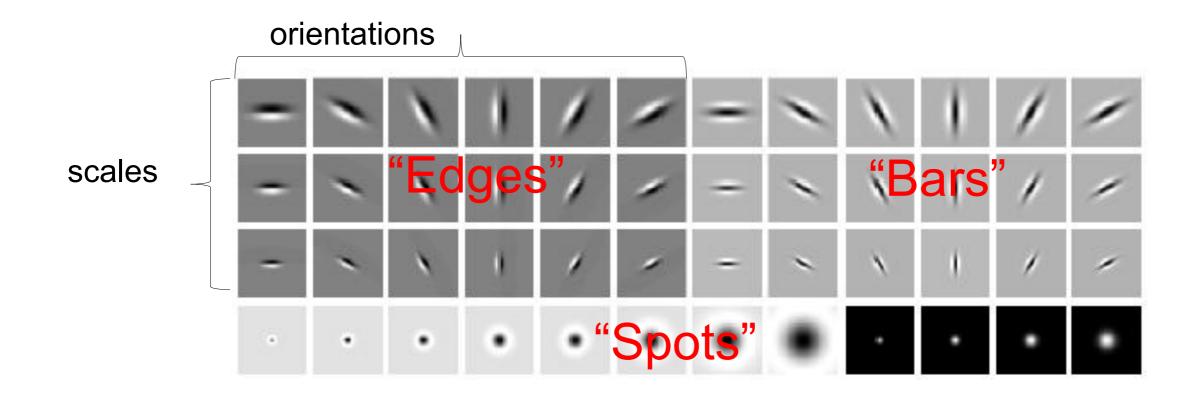
What is texture?

Regular or stochastic patterns caused by bumps, grooves, and/or markings

How can we represent texture?

 Compute responses of blobs and edges at various orientations and scales

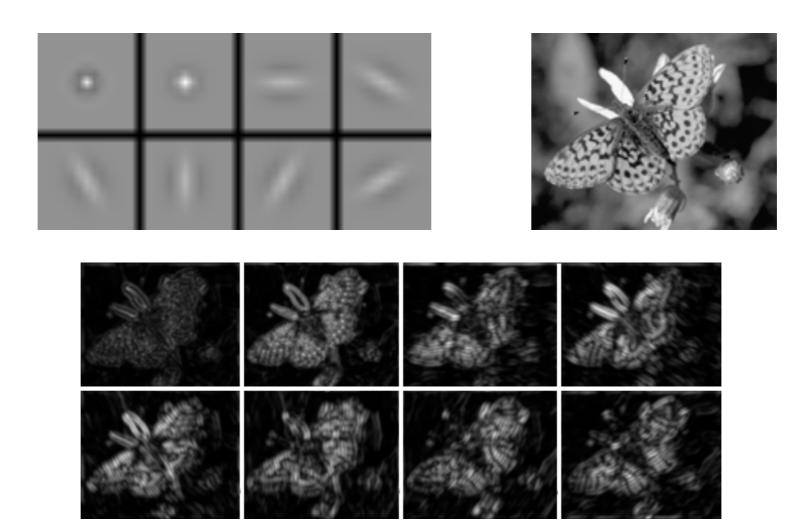
Overcomplete representation: filter banks



Code for filter banks: www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

Filter banks

Process image with each filter and keep responses (or squared/abs responses)

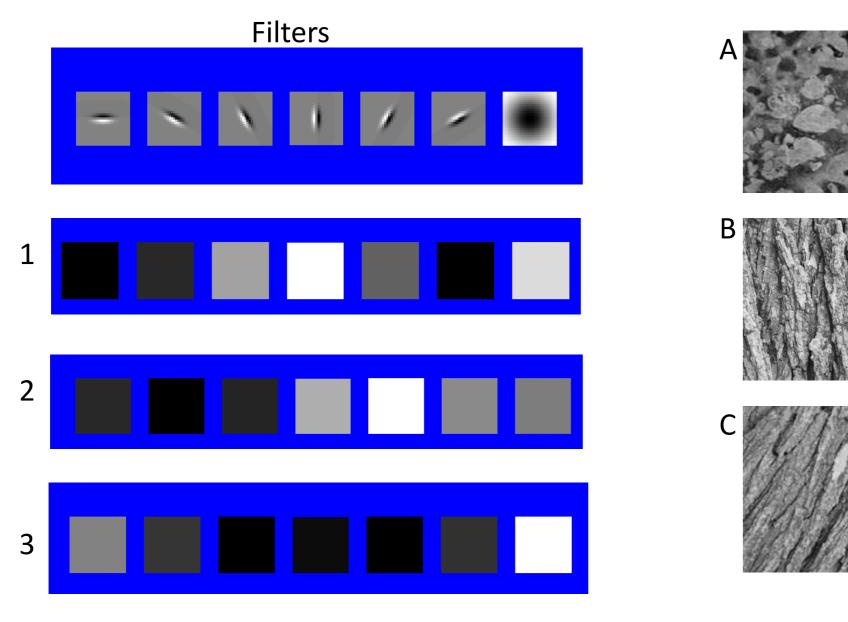


How can we represent texture?

 Measure responses of blobs and edges at various orientations and scales

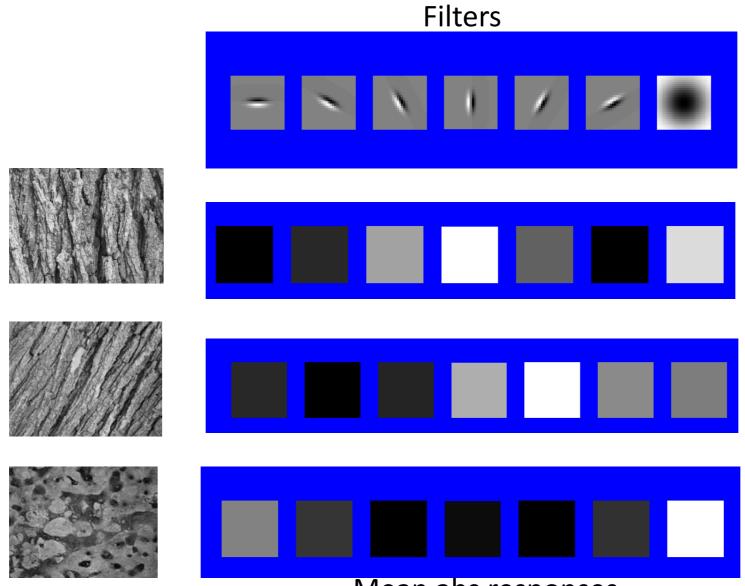
 Idea 1: Record simple statistics (e.g., mean, std.) of absolute filter responses

Can you match the texture to the response?



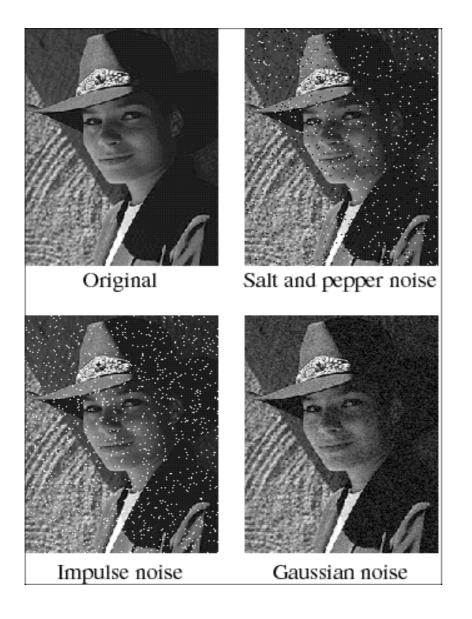
Mean abs responses

Representing texture by mean abs response



Mean abs responses

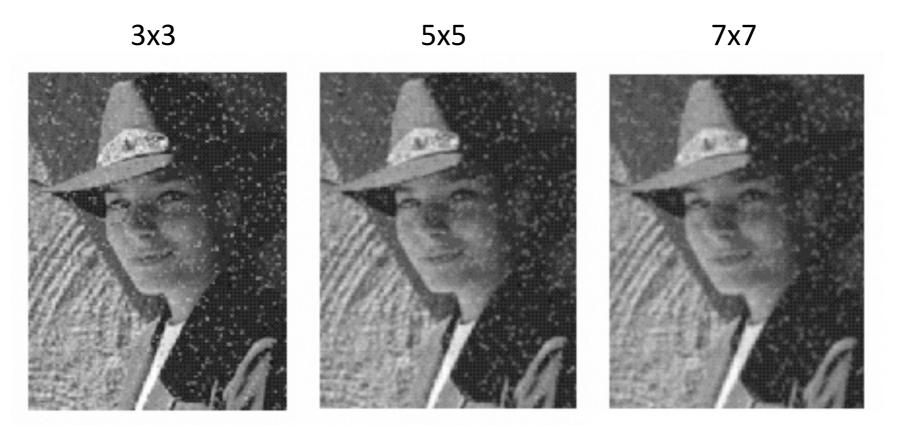
Denoising and Nonlinear Image Filtering



- Salt and pepper noise: contains random occurrences of black and white pixels
- Impulse noise: contains random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Source: S. Seitz

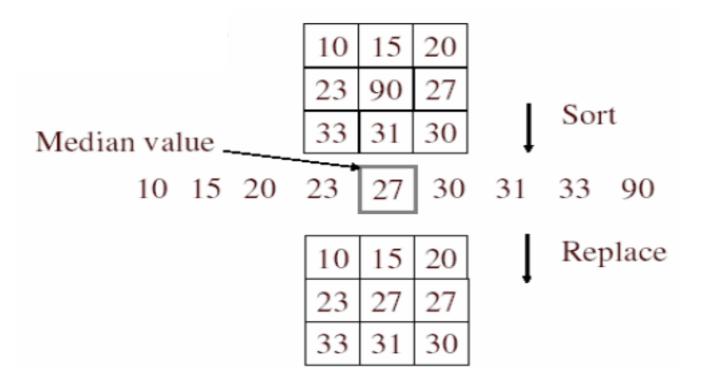
Reducing salt-and-pepper noise



• What's wrong with the results?

Alternative idea: Median filtering

• A median filter operates over a window by selecting the median intensity in the window



• Is median filtering linear?

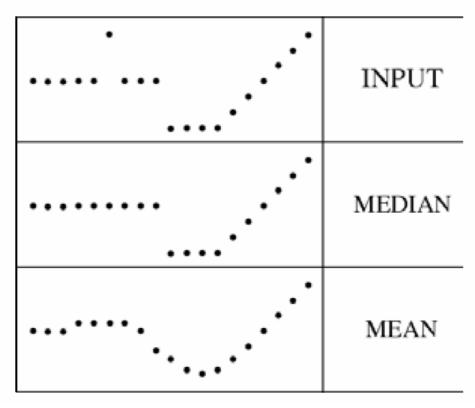
Median filter

- Is median filtering linear?
- Let's try filtering

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Median filter

- What advantage does median filtering have over Gaussian filtering?
 - Robustness to outliers

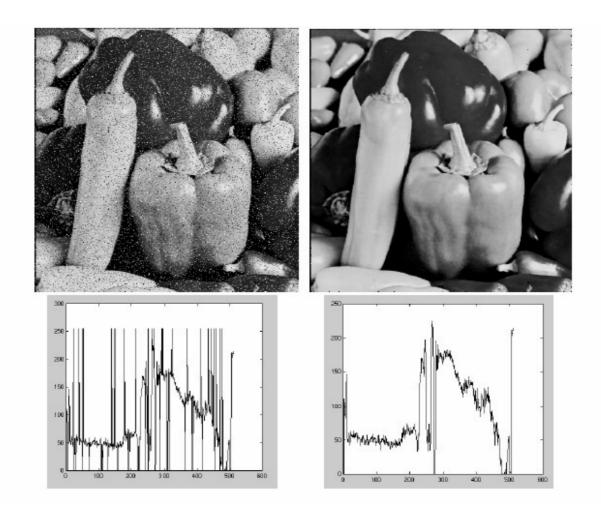


filters have width 5 :

Source: K. Grauman

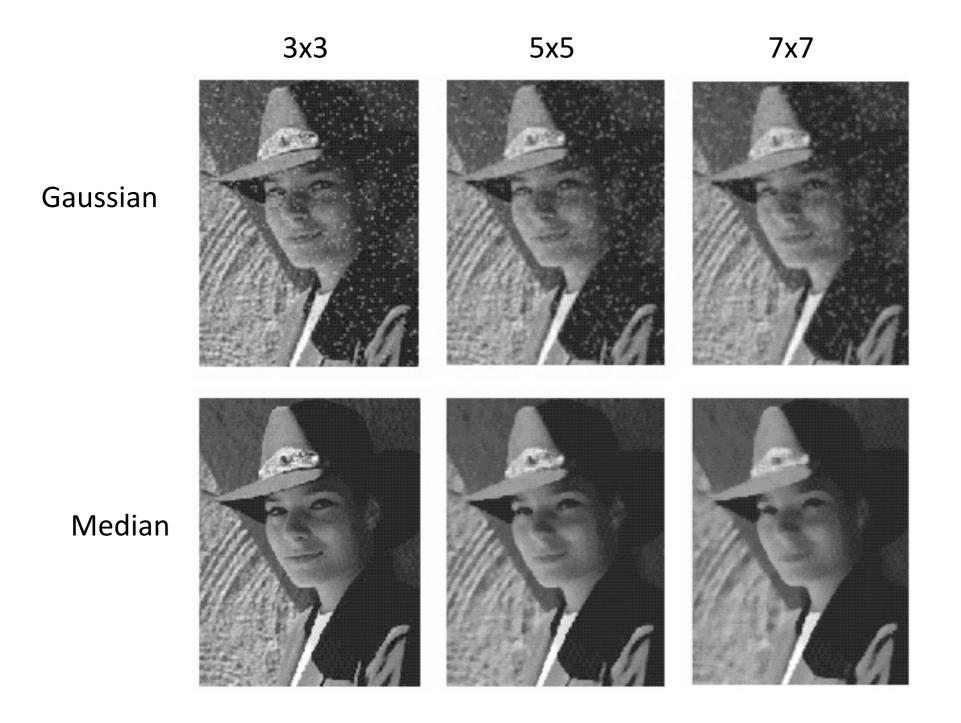
Median filter

Salt-and-pepper Median noise filtered



MATLAB: medfilt2(image, [h w])

Gaussian vs. median filtering



Other non-linear filters

- Weighted median (pixels further from center count less)
- Clipped mean (average, ignoring few brightest and darkest pixels)
- Bilateral filtering (weight by spatial distance and intensity difference)

Bilateral filtering

Things to remember

- Linear filtering is sum of dot product at each position
 - Can smooth, sharpen, translate (among many other uses)
- Gaussian filters
 - Low pass filters, separability, variance
- Attend to details:
 - filter size, extrapolation, cropping
- Application: representing textures
- Noise models and nonlinear image filters

