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Diffuse reflection: Lambert’s cosine law
Intensity does not depend on viewer angle. 

– Amount of reflected light proportional to  
– Visible solid angle also proportional to 

cos(𝜃)

cos(𝜃)



Intensity and Surface Orientation
Intensity depends on illumination angle because 
less light comes in at oblique angles. 

albedo 
 directional source 
 surface normal 

 reflected intensity

𝜌 =  

𝑺 =

𝑵 =

I =

𝐼(𝑥) = 𝜌(𝑥)(𝑺 ⋅ 𝑵(𝑥))
Slide: Forsyth



Perception of Intensity

from Ted Adelson



Perception of Intensity

from Ted Adelson



Darkness = Large Difference in Neighboring Pixels



Smoothing SharpeningInput
https://en.wikipedia.org/wiki/Albert_Einstein_in_popular_culture#/media/
File:Einstein_tongue.jpg

Why should we care?



Why should we care?

Image Pyramid Image interpolation/resampling
Source: D Forsyth Source: N Snavely



Why should we care?

Representing textures with filter banks 

LM filter bank. Code here

http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html


The raster image (pixel matrix)

0.92 0.93 0.94 0.97 0.62 0.37 0.85 0.97 0.93 0.92 0.99
0.95 0.89 0.82 0.89 0.56 0.31 0.75 0.92 0.81 0.95 0.91
0.89 0.72 0.51 0.55 0.51 0.42 0.57 0.41 0.49 0.91 0.92
0.96 0.95 0.88 0.94 0.56 0.46 0.91 0.87 0.90 0.97 0.95
0.71 0.81 0.81 0.87 0.57 0.37 0.80 0.88 0.89 0.79 0.85
0.49 0.62 0.60 0.58 0.50 0.60 0.58 0.50 0.61 0.45 0.33
0.86 0.84 0.74 0.58 0.51 0.39 0.73 0.92 0.91 0.49 0.74
0.96 0.67 0.54 0.85 0.48 0.37 0.88 0.90 0.94 0.82 0.93
0.69 0.49 0.56 0.66 0.43 0.42 0.77 0.73 0.71 0.90 0.99
0.79 0.73 0.90 0.67 0.33 0.61 0.69 0.79 0.73 0.93 0.97
0.91 0.94 0.89 0.49 0.41 0.78 0.78 0.77 0.89 0.99 0.93



Image filtering

• For each pixel, compute function of local 
neighborhood and output a new value 
• Same function applied at each position 
• Output and input image are typically the same size
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Slide Credit: L. Zhang



Image filtering

• Linear filtering 
• function is a weighted sum/difference of pixel values 

• Really important! 
• Enhance images 

• Denoise, smooth, increase contrast, etc. 

• Extract information from images 
• Texture, edges, distinctive points, etc. 

• Detect patterns 
• Template matching

Slide credit: Derek Hoiem
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• Given a camera and a still scene, how can you reduce noise?

Take lots of images and average them! 
What’s the next best thing?

Source: S. Seitz

Question: Noise reduction



First attempt at a solution

• Let’s replace each pixel with an average of all the 
values in its neighborhood 

• Assumptions:  
• Expect pixels to be like their neighbors 
• Expect noise processes to be independent from pixel to 

pixel

Slide credit: Kristen Grauman
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Slide credit: David Lowe (UBC)

Example: box filter
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What does it do? 
• Replaces each pixel with 

an average of its 
neighborhood 

• Achieve smoothing effect 
(remove sharp features)
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Slide credit: David Lowe (UBC)

Box Filter



Smoothing with box filter James Hays



Properties of smoothing filters

• Smoothing 
• Values positive  
• Sum to 1 ! constant regions same as input 
• Amount of smoothing proportional to mask size 
• Remove “high-frequency” components; “low-pass” 

filter

Slide credit: Kristen Grauman



Say the averaging window size is 2k+1 x 2k+1:

Loop over all pixels in 
neighborhood around  image 
pixel F[i,j]

Attribute 
uniform weight 
to each pixel

Now generalize to allow different weights depending on  
neighboring pixel’s relative position:

Non-uniform weights

Slide credit: Kristen Grauman

Correlation filtering



Filtering an image: replace each pixel with a linear 
combination of its neighbors. 

The filter “kernel” or “mask” H[u,v] is the prescription 
for the weights in the linear combination. 

This is called cross-correlation, denoted 

Slide credit: Kristen Grauman

Correlation filtering
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What is the result of filtering the impulse signal 
(image) F with the arbitrary kernel H?

?

Slide credit: Kristen Grauman

Filtering an impulse signal



• Convolution:  
• Flip the filter in both dimensions (bottom to top, 

right to left) 
• Then apply cross-correlation

Notation for 
convolution 
operator

F
H

Slide credit: Kristen Grauman

Convolution



Convolution

Cross-correlation

For a Gaussian or box filter, how will the outputs differ? 
If the input is an impulse signal, how will the outputs differ?

Slide credit: Kristen Grauman

Convolution vs. correlation

G=filter2(H,F); or 
G=imfilter(F,H);

G=conv2(H,F);



Practice with linear filters
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Source: D. Lowe



Practice with linear filters
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Source: D. Lowe



Practice with linear filters
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Practice with linear filters
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Source: D. Lowe



Practice with linear filters

Original
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(Note that filter sums to 1)

Source: D. Lowe



Practice with linear filters

Original
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Sharpening filter 
-  Accentuates differences with local 
average

Source: D. Lowe



Sharpening

Source: D. Lowe



Other filters
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Other filters
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Basic gradient filters
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Filtering vs. Convolution
• 2d filtering 

– h=tf.nn.conv2d(f,g,…);

• 2d convolution

f=image g=filter



Key properties of linear filters

Linearity:  
filter(f1 + f2) = filter(f1) + filter(f2) 

Shift invariance: same behavior regardless of pixel location 
filter(shift(f)) = shift(filter(f)) 

Any linear, shift-invariant operator can be represented as a 
convolution

Source: S. Lazebnik



• Weight contributions of neighboring pixels by nearness

0.003   0.013   0.022   0.013   0.003 
0.013   0.059   0.097   0.059   0.013 
0.022   0.097   0.159   0.097   0.022 
0.013   0.059   0.097   0.059   0.013 
0.003   0.013   0.022   0.013   0.003

5 x 5, σ = 1

Slide credit: Christopher Rasmussen 

Important filter: Gaussian

x y

x

y



Smoothing with Gaussian filter James Hays



Gaussian filters

• Remove “high-frequency” components from the image 
(low-pass filter) 
– Images become more smooth 

• Convolution with self is another Gaussian 
• So can smooth with small-width kernel, repeat, and get same 

result as larger-width kernel would have 
• Convolving two times with Gaussian kernel of width σ is same as 

convolving once with kernel of width   𝜎√2

Slide credit: Kristen Grauman



• What parameters matter here? 

• Size of kernel or mask 
• Note, Gaussian function has infinite support, but discrete 

filters use finite kernels

σ = 5 with 
10 x 10 
kernel

σ = 5 with 
30 x 30 
kernel

Slide credit: Kristen Grauman

Gaussian filters



• What parameters matter here? 

• Variance of Gaussian: determines extent of smoothing

σ = 2 with 
30 x 30 
kernel

σ = 5 with 
30 x 30 
kernel

Gaussian filters

Slide credit: Kristen Grauman



Practical matters

• What about near the edge? 
• the filter window falls off the edge of 

the image 
• need to extrapolate 
• methods: 

• clip filter (black) 
• wrap around 
• copy edge 
• reflect across edge

Source: S. Marschner



Practical matters

• methods (MATLAB): 
• clip filter (black): imfilter(f, g, 0)
• copy edge:                     imfilter(f, g, ‘replicate’)
• reflect across edge: imfilter(f, g, ‘symmetric’)

Source: S. Marschner



Practical matters
• What is the size of the output? 
• MATLAB: filter2(g, f, shape) 

• shape = ‘full’: output size is sum of sizes of f and g 
• shape = ‘same’: output size is same as f 
• shape = ‘valid’: output size is difference of sizes of f and g 

f

gg

gg

f

gg

gg

f

gg

gg

full same valid

Source: S. Lazebnik



2-mins break



Application: Representing Texture

Source: Forsyth



Texture and Material

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/



Texture and Orientation

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/



Texture and Scale

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/



What is texture?

 Regular or stochastic patterns caused by bumps, 
grooves, and/or markings



How can we represent texture?

• Compute responses of blobs and edges at various 
orientations and scales



Overcomplete representation: filter banks

Code for filter banks: www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

scales

orientations

“Edges” “Bars”

“Spots”



Filter banks

• Process image with each filter and keep responses (or 
squared/abs responses)



How can we represent texture?

• Measure responses of blobs and edges at various 
orientations and scales 

• Idea 1: Record simple statistics (e.g., mean, std.) of 
absolute filter responses



Can you match the texture to the response?

Mean abs responses

Filters A

B

C

1

2

3



Representing texture by mean abs response

Mean abs responses

Filters



Denoising and Nonlinear Image Filtering

• Salt and pepper noise: contains 
random occurrences of black 
and white pixels 

• Impulse noise: contains random 
occurrences of white pixels 

• Gaussian noise: variations in 
intensity drawn from a Gaussian 
normal distribution

Source: S. Seitz



Reducing salt-and-pepper noise

• What’s wrong with the results?

3x3 5x5 7x7



Alternative idea: Median filtering

• A median filter operates over a window by selecting 
the median intensity in the window 
 
 
 
 
 
 

•   Is median filtering linear?

Source: K. Grauman



Median filter

• Is median filtering linear? 

• Let’s try filtering
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⎥



Median filter

• What advantage does median filtering have over Gaussian filtering? 
• Robustness to outliers

Source: K. Grauman



Median filter

Salt-and-pepper 
noise

Median 
filtered

Source: M. Hebert

• MATLAB: medfilt2(image, [h w])



Gaussian vs. median filtering

3x3 5x5 7x7

Gaussian

Median



Other non-linear filters

• Weighted median (pixels further from center count less) 

• Clipped mean (average, ignoring few brightest and darkest 
pixels) 

• Bilateral filtering (weight by spatial distance and intensity 
difference)

http://vision.ai.uiuc.edu/?p=1455Image:

Bilateral filtering

http://vision.ai.uiuc.edu/?p=1455


Things to remember

• Linear filtering is sum of dot product at 
each position 

• Can smooth, sharpen, translate (among 
many other uses) 

• Gaussian filters 
• Low pass filters, separability, variance 

• Attend to details:  
• filter size, extrapolation, cropping 

• Application: representing textures 

• Noise models and nonlinear image filters
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