
Lecture 8: Statistical and Optimization 
Perspectives of Deep Learning

CSE 152: Computer Vision
Hao Su



Optimization of  
Neural Network



How to set network parameters
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Set the network parameters  such that ……𝜃
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How to let the neural 
network achieve this

Softm
ax

θ = {W1, b1, …, Wn, bn}



Training Data

• Preparing training data: images and their labels

Using the training data to find 
the network parameters.

“5” “0” “4” “1”

“3”“1”“2”“9”



Formalize

• Preparing training data: images and their labels
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Cost
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Cost can be Euclidean distance or cross 
entropy of the network output and target 

Given a set of network parameters , 
each example has a cost value. 
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Soft-Entropy Loss

The predicted score of groundtruth label category 
is larger than other categories:

How to set up a loss for this goal?

ylabel > yj  for any j ≠ label



\ell(f(x_i,W),y_i)=-\log score_{y_i}

Soft-Entropy Loss

Let ylabel(x; θ) =
ef(x;θ)label

∑j e f(x;θ)j

We minimize the loss 

L(θ) = − log ylabel(θ)



Total Cost
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Find the network 
parameters  that 
minimize this value
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Total Cost:

How bad the network 
parameters  is on 
this task
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Gradient Descent

𝑤1

𝑤2

Assume there are only two 
parameters w1 and w2 in a 
network.

The colors represent the value of C. Randomly pick a 
starting point 𝜃0

Compute the 
negative gradient 
at 𝜃0

−𝛻𝐶(𝜃0)

𝜃0

−𝛻𝐶(𝜃0) Times the 
learning rate 𝜂

−𝜂𝛻𝐶(𝜃0)𝛻𝐶(𝜃0) = [
𝜕𝐶(𝜃0)/𝜕𝑤1

𝜕𝐶(𝜃0)/𝜕𝑤2]

−𝜂𝛻𝐶(𝜃0)

𝜃 = {𝑤1, 𝑤2}Error Surface

𝜃∗



Gradient Descent

𝑤1

𝑤2

Compute the 
negative gradient 
at 𝜃0

−𝛻𝐶(𝜃0)

𝜃0

Times the 
learning rate 𝜂

−𝜂𝛻𝐶(𝜃0)

𝜃1
−𝛻𝐶(𝜃1)

−𝜂𝛻𝐶(𝜃1)
−𝛻𝐶(𝜃2)

−𝜂𝛻𝐶(𝜃2)𝜃2

Eventually, we would 
reach a minima ….. Randomly pick a 

starting point 𝜃0



Local Minima

• Gradient descent never guarantee global minima 

𝐶

𝑤1 𝑤2

Different initial 
point   𝜃0

Reach different minima, 
so different results

Who is Afraid of Non-Convex 
Loss Functions? 
http://videolectures.net/
eml07_lecun_wia/



Besides local minima ……
cost

parameter space

Very slow at the 
plateau

Stuck at local minima

𝛻𝐶(𝜃) = 0

Stuck at saddle point

𝛻𝐶(𝜃) = 0𝛻𝐶(𝜃) ≈ 0



Stochastic Gradient Descent (SGD)
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➢ Pick the 1st batch
➢ Randomly initialize 𝜃0

𝜃1 ← 𝜃0 − 𝜂𝛻𝐶(𝜃0)
➢ Pick the 2nd batch

𝜃2 ← 𝜃1 − 𝜂𝛻𝐶(𝜃1)
➢ Until all mini-batches 
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…
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Repeat the above process

𝐶 = 𝐶1 + 𝐶31 + ⋯

𝐶 = 𝐶2 + 𝐶16 + ⋯



• A network can have millions of parameters. 
• Backpropagation is the way to compute the gradients 

efficiently (not today) 
• Ref: http://speech.ee.ntu.edu.tw/~tlkagk/courses/

MLDS_2015_2/Lecture/DNN%20backprop.ecm.mp4/
index.html 

• Many toolkits can compute the gradients automatically

Backpropagation

Ref: http://speech.ee.ntu.edu.tw/~tlkagk/courses/
MLDS_2015_2/Lecture/Theano%20DNN.ecm.mp4/index.html



Back Propagation

● Back-propagation training algorithm 

● Backprop adjusts the weights of the NN in order to 
minimize the network total error.

Network activation 
Forward Step

Error propagation 
Backward Step



Why Deep?



Universality Theorem

Reference for the reason: 
http://
neuralnetworksanddeeplearn
ing.com/chap4.html

Any continuous function f

M: RRf N →

Can be realized by a network 
with one hidden layer

(given enough hidden 
neurons)



The Unreasonable Effectiveness 
of Gradient Descent 

• While the loss function for neural networks is highly 
non-convex, empirically (and theoretically), we can 
show that, with many hidden neurons, the value of 
local minima are almost as small as the global 
minimum

Then why “Deep” neural network not “Fat” neural network?



Fat + Short v.s. Thin + Tall

1x 2x
……

Nx

Deep
1x 2x

……
Nx

……

Shallow

Which one is better?

The same number 
of parameters



Fat + Short v.s. Thin + Tall

“Why deep” is a very “deep” question! 

No simple answer yet, even no fully 
convincing answer yet!



Statistical View of 
Machine Learning

We start from understanding some simple classifiers, 
to draw inspiration for understanding neural networks!



April 5, 2018

Example Task: Image Classification

(assume given set of discrete labels) 
{dog, cat, truck, plane, ...} 

cat

This image by Nikita is  
licensed under CC-BY 2.0

Lecture 2 - 23

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/


April 5, 2018

An image classifier

24

Unlike e.g. sorting a list of numbers, 

no obvious way to hard-code the algorithm for  
recognizing a cat, or other classes.

Lecture 2 -
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Machine Learning: Data-Driven Approach

Fei-Fei Li & Justin 
Johnson & Serena 
Yeung

25

1. Collect a dataset of images and labels 
2. Use Machine Learning to train a classifier 
3. Evaluate the classifier on new images 

Example training set

Lecture 2 -
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First classifier: Nearest Neighbor

26

Memorize all  
data and labels 

Predict the label  
of the most similar  
training image

Lecture 2 -
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Example Dataset: CIFAR10

27

10 classes 
50,000 training images 
10,000 testing images

Alex Krizhevsky, “Learning Multiple Layers of Features from Tiny Images”, Technical Report, 2009.

Lecture 2 -



April 5, 2018

Example Dataset: CIFAR10

28

10 classes 
50,000 training images
10,000 testing images Test images and nearest neighbors

Alex Krizhevsky, “Learning Multiple Layers of Features from Tiny Images”, Technical Report, 2009.

Lecture 2 -



What does Nearest Neighbor look like?
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What does Nearest Neighbor look like?

30

Lecture 2 -
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K-Nearest Neighbors

31

Instead of copying label from nearest neighbor,  
take majority vote from K closest points

Lecture 2 -

K = 1 K = 3 K = 5



April 5, 2018

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance L2 (Euclidean) distance

Fei-Fei Li & Justin Johnson & 
Serena Yeung 32

Lecture 2 -
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Hyperparameters
• What is the best value of k to use?  What is 

the best distance to use? 

• These are hyperparameters: choices about  
the algorithm that we set rather than learn  

• The deep v.s. fat choice for neural 
networks is similarly a choice of 
“algorithms”

33

Lecture 2 -
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K-Nearest Neighbors

34

Lecture 2 -

K = 1 K = 3 K = 5

Observations: 
Small K (e.g., K=1): every sample matters, sophisticated 
boundary 

Large K (e.g., K=5): voting finds the consensus in the 
neighborhood, simpler boundary



April 5, 2018

K-Nearest Neighbors

35

Lecture 2 -

K = 1 K = 3 K = 5

Observations: 
Small K (e.g., K=1): every sample matters, sophisticated 
boundary, high model complexity 

Large K (e.g., K=5): voting finds the consensus in the 
neighborhood, simpler boundary, low model complexity



Bias and Variance

• Bias – error caused because the model lacks the 
ability to represent the (complex) concept 

• Variance – error caused because the learning 
algorithm overreacts to small changes (noise) in the 
training data 

TotalLoss = Bias + Variance (+ noise)
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K-Nearest Neighbors

37

Lecture 2 -

K = 1 K = 3 K = 5

Which one has higher bias? higher variance?

• Bias – error caused because the model lacks the ability to represent 
the (complex) concept 

• Variance – error caused because the learning algorithm overreacts 
to small changes (noise) in the training data



Weaker Modeling Process 
( higher bias )

• Simple Model (e.g. linear, large K in KNN) 

• Small Feature Set (e.g. few neurons) 

• Constrained Search (e.g. few iterations of 
gradient descent)

More Powerful Modeling Process 
(higher variance)

• Complex Model (e.g. networks, small K in 
KNN) 

• Large Feature Set (e.g. many neurons) 

• Unconstrained Search (e.g. exhaustive 
search)

The Power of a Model Building Process



Overfitting v.s. Underfitting

• Fitting the data too well 
• Features are noisy / 

uncorrelated to concept 
• Modeling process very 

sensitive (powerful) 
• Too much search

• Learning too little of the 
true concept 

• Features don’t capture 
concept 

• Too much bias in model 
• Too little search to fit 

model

Overfitting Underfitting
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K-Nearest Neighbors

40

Lecture 2 -

K = 1 K = 3 K = 5

Which one tends to overfit? to underfit?



Credit: Elements of Statistical Learning, Second edition



Summary of Overfitting and 
Underfitting
• Bias / Variance tradeoff a primary challenge in machine 

learning 

• Internalize: More powerful modeling is not always better 

• Learn to identify overfitting and underfitting 

• Tuning parameters & interpreting output correctly is key



Back to Neural Networks



Recap: Universality Theorem

Reference for the reason: 
http://
neuralnetworksanddeeplearn
ing.com/chap4.html

Any continuous function f

M: RRf N →

Can be realized by a network 
with one hidden layer

(given enough hidden 
neurons)



Universality is Not Enough

• Neural network has very high capacity (millions of 
parameters) 

• By our basic knowledge of bias-variance tradeoff, so 
many parameters should imply very low bias, and 
very high variance. The test loss may not be small. 

• Many efforts of deep learning are about mitigating 
overfitting!



Address Overfitting for NN

• Use larger training data set 

• Design better network architecture



Address Overfitting for NN

• Use larger training data set 

• Design better network architecture



•

ImageNet Large Scale Visual Recognition Challenge 
Russakovsky, Deng, Su, et al. IJCV 2015



Address Overfitting for NN

• Design better network architecture 

• Use larger training data set



Fat + Short v.s. Thin + Tall

1x 2x
……

Nx

Deep
1x 2x

……
Nx

……

Shallow

Which one is better?

The same number 
of parameters



The Intuition behind Deep

• To achieve the same representation power, we can 
use fewer neurons with a deeper architecture 

• Fewer neurons risk less for overfitting (lacking rigor 
for this argument)



∑

ai = ReLU(x −θi )

θ1

θ2

θ6

x y

ReLU(x) =
0 if x < 0
x if x >= 0

⎧
⎨
⎩

Fat + Short NN  
With 6 neurons

Assume  for all neurons, just learn the bias term wi = 1 bi



∑

ai = ReLU(x −θi )

θ1

θ2

θ6

x y

ReLU(x) =
0 if x < 0
x if x >= 0

⎧
⎨
⎩

θ1 θ2 θ6 x

y

y = ReLU(x-θi )
i
∑

piece-wise linear, 6 knots

Assume  for all neurons, just learn the bias term wi = 1 bi

Fat + Short NN  
With 6 neurons



a1, i = ReLU(x −θi )

θ1

θ2

θ3

φ1

φ2

φ3x y
∑

ya2, i = ReLU(x −φi )

Thin + Tall NN  
With 6 neurons

Assume  for all neurons, just learn the bias term wi = 1 bi



a1, i = ReLU(x −θi )

θ1

θ2

θ3

φ1

φ2

φ3x y
∑

y = ReLU([ ReLU(x-θ j )
1≤ j≤3
∑ ]-φi )

1≤i≤3
∑

piece-wise linear, can have 9 knots!
x

ya2, i = ReLU(x −φi )

Thin + Tall NN  
With 6 neurons

Assume  for all neurons, just learn the bias term wi = 1 bi



Interpretation I: With the same number of neurons, 
                          create combinatorial data flow

θ1

θ2

θ3x y
∑

φ1

φ2

φ3

Thin + Tall NN  
With 6 neurons



Interpretation II: Abstract data progressively 
                          (edge-part-object)

Interpretation I: With the same number of neurons, 
                          create combinatorial data flow

θ1

θ2

θ3x y
∑

Thin + Tall NN  
With 6 neurons

φ1

φ2

φ3



Recipe for Learning

http://www.gizmodo.com.au/2015/04/the-basic-recipe-for-machine-learning-
explained-in-a-single-powerpoint-slide/



Recipe for Learning

http://www.gizmodo.com.au/2015/04/the-basic-recipe-for-machine-learning-
explained-in-a-single-powerpoint-slide/

overfittingDon’t forget!

Preventing 
Overfitting

Modify the Network
Better optimization 

Strategy



Next lecture:

Convolutional Neural Network

A big step-forward to reduce parameters of networks:


