CSE 152: Computer Vision

Hao Su

Lecture 9: Convolutional Neural Network and
Learning

Recap: Bias and Variance

e Bias — error caused because the model lacks the
ability to represent the (complex) concept

« VVariance — error caused because the learning
algorithm overreacts to small changes (noise) in the

training data

TotallLoss = Bias + Variance (+ noise)

High Bias Low Bias
Low Variance High Variance

Test Sample

/

Prediction Error

/

Training Sample

Low High
Model Complexity

FIGURE 2.11. Test and training error as a function of model complexity.

Recap: Universality Theorem

Any continuous function f

f:R" —=RY

Can be realized by a network
with one hidden layer

(given enough hidden Reference for the reason:
http://
neurons) neuralnetworksanddeeplearn

ing.com/chap4.html

Recap: Universality is Not Enough

« Neural network has very high capacity (millions of
parameters)

e By our basic knowledge of bias-variance tradeoff, so
many parameters should imply very low bias, and
very high variance. The test loss may not be small.

« Many efforts of deep learning are about mitigating
overfitting!

Address Overfitting for NN

e Use larger training data set

e Design better network architecture

Address Overfitting for NN

e Use larger training data set

« Design better network architecture

Convolutional Neural
Network

Images as input to neural networks

33

Ranzaton

Images as input to neural networks

Example: 200x200 image

40K hidden units
m) ~2B parameters!!!

33

Ranzaton

Images as input to neural networks

Example: 200x200 image
40K hidden units
m) ~2B parameters!!!

- Spatial correlation is local
- Waste of resources + we have not enough

- 33
training samples anyway.. Ranzat n
anzato

Convolutional Neural Networks

« CNN = a multi-layer neural network with

— Local connectivity:

e Neurons in a layer are only connected to a small region
of the layer before it

— Share weight parameters across spatial positions:

« Learning shift-invariant filter kernels

7
ji=s
I4

Image credit: A. Karpathy

Jia-Bin Huang and Derek Hoiem, UIUC

Share the same parameters across
W (N different locations (assuming input is

| ’ tionary):
iy %
\ -
O
L)

36
Ranzaton

Convolutional Layer

{0 ifw-z+b6<0

g Perceptron: output —
' ‘ , 1 fw-z+b>0
1K
B 1 . , .. This is convolution!

Share the same parameters across

N different locations (assuming input is

L stationary):
\ Convolutions with learned kernels

36
Ranzaton

Recap: Image filtering AR

90 90 90 90 90

90 90 90 90 90

. 90 90 90 90 90 .
. O . N .
. 90 90 90 90 90 .
3

O~

e]
.. 60 9 90 90 = 60
.. 50 80 80 90 60
.. 50 80 80 90 | 60
-
B
.

h[m,n] = Z flk, 1 [[m+k,n+1]

Credit: S. Seitz

Convolutional Layer

Convolutional Layer

VAN

Convolutional Layer

S

VAN

Convolutional Layer

""‘»‘

Convolutional Layer

Convolutional Layer

Stride = 3

Stride = 3

Stride = 3

Stride = 3

Stride = 3

2D spatial filters

o If images are 2-D, parameters should also be organized in 2-D
> That way they can learn the local correlations between input variables
> That way they can “exploit” the spatial nature of images

Grayscale

Filters

k-D spatial filters

o Similarly, if images are k-D, parameters should also be k-D

Grayscale RGB Multiple channels

k dims

Filters

Dimensions of convolution

image Convolutional layer

Slide: Lazebnik

Dimensions of convolution

feature map

) ~

learned
weights
— |
\ 1
\
~_ I

image Convolutional layer

Slide: Lazebnik

Dimensions of convolution

feature map

/

learned
weights

\ R
T

image Convolutional layer

Slide: Lazebnik

Dimensions of convolution

next layer
image Convolutional layer

Slide: Lazebnik

Dimensions of convolution

Wout

hout

dout

Stride s Wout =

Number of weights

RGB

2 dims X

7":'

7.

3

.

How many weights for this neuron?
7-7-3 =147

Number of weights

O O O ‘ ¢pth=5 dims
20000

How many weights for these 5 neurons?
5:7:-7:-3=735

Convolutional Neural Networks

o Question: Spatial structure?
o Answer: Convolutional filters

o Question: Huge input dimensionalities?
> Answer: Parameters are shared between filters

o Question: Local variances?
> Answer: Pooling

[Slides credit: Efstratios Gavves]

Local connectivity

o The weight connections are surface-wise locall
> Local connectivity

/

o The weights connections are depth-wise global

o For standard neurons no local connectivity
> Everything is connected to everything

Pooling operations

o Aggregate multiple values into a single value

Single depth slice

max pool with 2x2 filters
and stride 2

11112 | 4
S| 6 7|8
312,10
112]3| 4

>

Pooling operations

Aggregate multiple values into a single value

Invariance to small transformations
o Keep only most important information for next layer

Reduces the size of the next layer
« Fewer parameters, faster computations

Observe larger receptive field in next layer
« Hierarchically extract more abstract features

Single depth slice

y 1111124
max pool with 2x2 filters
516 |7 8 and stride 2 6 | 8
31210] 3| 4
1 21 3| 4

\

Yann LeCun’s MNIST CNN architecture

G331 maps 16@10x10

ggg % ngﬂtare maps S4: 1. maps 16@5x5
S52:f. maps Co:layer .

B 10

I
Full connection Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection oo nzato

AlexNet for ImageNet

params AlexNet FLOPs

am [[TRCH000 T 4M
1M [FC4096/RelU | 16M

Layers 442K 74M
- Kernel sizes
. Strides 1.3M 112M
- #channels 884K 149M
- #kernels
- Max pooling

307K 223M

[Krizhevsky et al. 2012]

AlexNet diagram (simplified)

Input size
227 x 227 x 3
55
dense dense
13 13 13 p— dense
i1) -
!) - 3
BN \T] . g = 3 3 M1 re
5 < /!]
997 Input | 3
—-| Image 3 \ 384 ‘ 384 256 1000
(RGB) o mex || L
Max = Mo pooling 4096 4096
tr pooling pooling
227 Lf" - 33 3x3
Stride 2 Stride 2
Conv1 Conv 2 Conv 3 Conv 4 Conv 4
11x11x3 5x5x48 3x3x256 3x3x192 3x3x192
Stride 4 Stride 1 Stride 1 Stride 1 Stride 1

96 filters 256 filters 384 filters 384 filters 256 filters

Interpretation

prediction of class

high-level

parts

| = distributed representations
mid-level .

parts = feature sharing

= compositionality

low level

parts

Input image - e

B e T

=== 16
Lee et al. “Convolutional DBN's ...” ICML 2009 Ranzaton

Learning Neural
Networks

Practice |l: Setting
Hyperparameters

Practice |: Setting Hyperparameters

Idea #1: Choose hyperparameters
that work best on the data

Your Dataset

Practice |: Setting Hyperparameters

Idea #1: Choose hyperparameters

that work best on the data

BAD: big network always works
perfectly on training data

Your Dataset

Practice |: Setting Hyperparameters

Idea #1: Choose hyperparameters BAD: big network always works
that work best on the data perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose
hyperparameters that work best on test data

train test

Practice |: Setting Hyperparameters

Idea #1: Choose hyperparameters BAD: big network always works
that work best on the data perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose BAD: No idea how algorithm
hyperparameters that work best on test data will perform on new data

train test

Practice |: Setting Hyperparameters

Idea #1: Choose hyperparameters
that work best on the data

BAD: big network always works
perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose
hyperparameters that work best on test data

BAD: No idea how algorithm
will perform on new data

train test
Idea #3: Split data into train, val, and test; choose
Better!
hyperparameters on val and evaluate on test
train validation test

Practice Il: Select Optimizer

Stochastic gradient descent

Gradient from entire training set:

VC =1y VC,

For large training data, gradient computation takes a long time
e Leadsto “slow learning”

Instead, consider a mini-batch with m samples
If sample size is large enough, properties approximate the dataset

Y7L VCx, Y.,VC,

m n

vC

Stochastic gradient descent

What if the loss
function has a
local minima or
saddle point?

Zero gradient,
gradient descent
gets stuck

Stochastic gradient descent

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large

Stochastic gradient descent

Our gradients come from
minibatches so they can be noisy!

L L2005
(W) = N; (3, yi, W)

Vi L(W) = vaL (i, Y5, W)

z—l

Stochastic gradient descent

Momentum update:

Velocity

actual step

>
Gradient

SGD SGD+Momentum

Vi1 = pvr + V f(xy)
Tt+1 = Tt — QVt41
Build up velocity as a running mean of gradients.

L1 — Tt — Ofo(It)

Many variations of using
momentum

« In PyTorch, you can manually specify the
momentum of SGD

« Or, you can use other optimization algorithms with
“adaptive” momentum, e.g., ADAM

« ADAM: Adaptive Moment Estimation

e Empirically, ADAM usually converges faster, but SGD
gives local minima with better generalizability

Practice lll: Data Augmentation

Load image
and label

Compute

loss
—v

Bl CNN

Transform image

Horizontal flips

Random crops and scales

1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Color jitter

More Complex:

Simple: Randomize 1. Apply PCAto all [R, G, B]

contrast and brightness

pixels in training set

2. Sample a “color offset”

along principal component
directions

3. Add offset to all pixels of a
training image

Color jitter

More Complex:

Simple: Randomize 1. Apply PCAto all [R, G, B]

contrast and brightness

pixels in training set

2. Sample a “color offset”
along principal component
directions

3. Add offset to all pixels of a
training image

Can do a lot more: rotation, shear, non-rigid,
motion blur, lens distortions,

Exam

e Linear algebra, such as

e rank, null space, range, invertible, eigen decomposition, SVD, pseudo
inverse, basic matrix calculus

e Optimization:
 Least square, low-rank approximation, statistical interpretation of PCA
« Image formation
« diffuse/specular reflection, Lambertian lighting equation
e Filtering
o Linear filter, filter vs convolution, properties of filters, filterbank, usage
of filters, median filter
« Statistics:
e Bias, variance, bias-variance tradeoff, overfitting, underfitting
« Neural network

o Linear classifier, softmax, why linear classifier is insufficient, activation
function, feed-forward pass, universality theorem, what does back-
propagation do, stochastic gradient descent, concepts in neural
networks, why CNN, concepts in CNN, how to set hyperparameter,
moment in SGD, data augmentation

