
Lecture 19: Final Review

CSE 152: Computer Vision
Hao Su



Coverage

• Anything taught this quarter may appear

• >90% on materials from L12 (3D Deep Learning)



Form

• 3 big problems that need calculation
• Understand your homework well

• A few short Q&A



Principle No. 1

• No cheating!

• We will curve and be generous in grading

• But we will not tolerate any cheating



Lecture 12: 3D Deep Learning
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Credit: Stanford CS231n, L13



Voxelization

Represent the occupancy of regular 3D grids



3D CNN on Volumetric Data

3D convolution uses 4D kernels



Complexity Issue

AlexNet, 2012 3DShapeNets, 
2015Input resolution: 224x224

Input resolution: 30x30x30224x224=50176

224x224=27000



Store only the Occupied Grids

• Store the sparse surface signals
• Constrain the computation near the surface



Point cloud
(The most common 3D sensor data)



2D array representation

N

D

Properties of a Desired Point Network 

Point cloud: N orderless points, each represented by a 
D dim coordinate



Permutation Invariance

Point cloud: N orderless points, each represented by a 
D dim coordinate

2D array representation

N

D

N

D

represents the same set as 



Construct a Symmetric Function

simple symmetric function

PointNet (vanilla)

h

g γ

Observe:

f (x1, x2,…, xn ) = γ ! g(h(x1),…,h(xn )) is symmetric if      is symmetricg

(1,2,3)

(1,1,1)

(2,3,2)

(2,3,4)



Lecture 13: Camera Models

CSE 152: Computer Vision
Hao Su

Credit: CS231a, Stanford, Silvio Savarese



Converting to pixels



Projective transformation in the  
homogenous coordinate system



Camera Skewness



World reference system

intrinsic extrinsic



The projective transformation



Lecture 14: Multiview Geometry
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Epipolar Geometry

O1 O2

e1 e2

• Epipoles: e1 , e2
= intersections of baseline with image planes
= projections of the other camera center

• Epipoles: e1 , e2• Baselines
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Epipolar Geometry
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= projections of the other camera center

• Epipoles: e1 , e2• Baselines

X

p

e1

l1

e2

O1 O2

• Epipolar plane

m1 m2

• Epipolar line

q

l2
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Essential Matrix

• Let camera 1 be [I, 0] and camera 2 be [R, t]. 
• In camera 1 coordinates, 3D point X is given by                      . 

• In camera 2 coordinates, 3D point X is given by                      . 

• Since camera 2 is related to camera 1 by rigid-body motion [R, t]

epipolar plane

epipolar line
epipolar line

0

(projection of ray)

X

• Assume  and  in  are two points on the (virtual) image plane of 
two cameras 

• Denoted by the pinhole frame coordinate in the corresponding 
cameras

p q ℝ3



• We have:  

• Define: 

• Then, we have:

Essential Matrix

epipolar plane

epipolar line
epipolar line

0

(projection of ray)

Essential matrix

X

(p1)T[t]×Rq2 = 0

rank(E)=2

(p1)TEq2 = 0 pTEq = 0omit 

superscript



• Consider intrinsic camera matrices 
• Then, p and q are in the pinhole frame and pixel counterparts are: 

• Recall essential matrix constraint: 

• Substituting, we have:

Fundamental Matrix

epipolar plane

epipolar line
epipolar line

0

(projection of ray)

X

pTEq = 0

(K−1
1 p′ )TE(K−1

2 q′ ) = 0



• Essential matrix constraint in pixel space:                                           .  

• Rearranging: 

• Define: 

• Then, we have:

Fundamental Matrix

epipolar plane

epipolar line
epipolar line

0

(projection of ray)

Fundamental matrix

X

(K−1
1 p′ )TE(K−1

2 q′ ) = 0

p′ 
TK−T

1 EK−1
2 q′ = 0

p′ 
TFq′ = 0

F = K−T
1 EK−1

2 rank(F)=2



Epipolar Constraint

pT ⋅ E p' = 0𝑝𝑇
1 ⋅ 𝐹𝑝2 = 0

•  defines an equation  

• Note that,  is the corresponding point of  by the 

derivation of F 

• So,  defines the epipolar line of 

w1 = Fp2 wT
1 p1 = 0

p1 p2

w1 = Fp2 p2



Why F is useful?

- Suppose F is known 

- No additional information about the scene and camera is given 
- Given a point on left image, we can compute the corresponding epipolar line in the second image

 m2 = FT p1p1 p2



Estimating F Suppose we have a pair of 
corresponding points:



Estimating F



Estimating F



Flow of the 8-Point Algorithm

Wf = 0, ∥f∥ = 1
Least-square

minimize
f

∥Wf∥2

s . t . ∥f∥ = 1

minimize
f

fTWTWf

s . t . fT f = 1

Do you remember how to solve the problem?

Hint: Check your HW1 (by the SVD of W)





Simultaneous Correspondence and F Estimation

• Simultaneous Correspondence and F Estimation 

• With F, it is easier to compute correspondence 

• With correspondence, we can estimate F 

• A Chicken-or-Egg problem



Detect features using, for example,  SIFT [Lowe, IJCV 2004] or 
learning-based keypoint detector

Basic Pipeline: Feature detection



VLFeat’s 800 most confident matches among 
10,000+ local features.



Basic Pipeline: Repeat the above steps (RANSAC)

for i in range(n): 
randomly choose some pairs 
repeat for m times: 

based on the inliers, estimate F 
based on F, remove pairs with big errors 



Lecture 16: Stereo Reconstruction

CSE 152: Computer Vision
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Problem setup

• Known:  

• Two views of the same scene 

• Corresponding points between views 

• Intrinsic camera matrices ( ), i.e., camera 
calibration has been done 

• Fundamental matrix  

• Question: Point coordinates in 3D space

K1, K2

F



Image 1

Image 2

X

x1
x2 xT1Fx2 = 0

x1↔ x2

???

(R, T )

Step I: Estimate (R,T) Between Cameras



• Get E from F: 

• Decompose E into skew-symmetric and rotation 
matrices:

Step I: Estimate (R,T) Between Cameras

F = K−T
1 EK−1

2

E = KT
1 EK2

https://en.wikipedia.org/wiki/Essential_matrix


• With , R, t, we can compute the projection 
matrices for both cameras:  

• The projective projection equation:

Ki

Step II: Reprojection Error Minimization

A non-linear transformation, denoted by pi = f(Pi)

https://en.wikipedia.org/wiki/Essential_matrix


• Minimize sum of squared reproduction errors: 

• Optimized with non-linear least squares 
• LM algorithm (Levenberg-Marquardt) is a popular choice

Step II: Reprojection Error Minimization

minimize
{Pi}

n

∑
i=1

2

∑
j=1

wij f(Pi; Rj, tj) − [ui, j
vi, j]

2

predicted  
image location

observed 
image locationindicator variable: 

whether point i visible in image j



Lecture 17: Motion Estimation
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Motion Field & Optical Flow Field
• Motion Field = Real world 3D motion 
• Optical Flow Field = Projection of the motion 

field onto the 2d image

3D motion vector

2D optical flow 
vector

( )vu,u =!

CCD

Slide adapted from Savarese.



Apparent motion
• Optical flow differs from actual motion field: 

• (a) intensity remains constant, so that no motion is 
perceived; 

• (b) no object motion exists, however moving light 
source produces shading changes.
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Key Assumptions: Brightness Constancy

* Slide from Michael Black, CS143 2003



Key Assumptions: Small Motions

* Slide from Michael Black, CS143 2003



Key Assumptions: Spatial Coherence 

* Slide from Michael Black, CS143 2003



Optical Flow Constraints (grayscale images)

• Let’s look at these constraints more closely
• Brightness constancy constraint  (equation)

• Small motion:  (u and v are less than 1 pixel, or smoothly varying) 
Taylor series expansion of I:

( , , )I x y t ( , , 1)I x y t +

( , , ) ( , , 1)I x y t I x u y v t= + + +

I(x + u, y + v, t + 1) = I(x, y, t) +
∂I
∂x

u +
∂I
∂y

v +
∂I
∂t

+ o(1)



The Brightness Constancy Constraint

• How many equations and unknowns per pixel?

The component of the flow perpendicular to the gradient (i.e., parallel 
to the edge) cannot be measured

edge

(u,v)

(u’,v’)

gradient

(u+u’,v+v’)

If (u, v ) satisfies the equation,  
so does (u+u’, v+v’ ) if 

∇I ⋅ u' v'[ ]T = 0

Can we use this equation to recover image motion (u,v) at each pixel?
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• One equation (this is a scalar equation!), two unknowns (u,v)

0 ,tI I u v= +∇ ⋅ < >



Solving the Ambiguity…

• How to get more equations for a pixel?
• Spatial coherence constraint 
     Assume the pixel’s neighbors have the same (u,v)

   If we use a 5x5 window, that gives us 25 equations per pixel

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In 
Proceedings of the International Joint Conference on Artificial Intelligence, pp. 674–679, 1981.



Matching Matches Across Images
• Overconstrained linear system

The summations are over all pixels in the K x K window

Least squares solution for d given by

A =
(∇I(p1))T

⋮
(∇I(pn)T

⇒ AT A = ∑
i

∇I(pi)(∇I(pi))T = [
∑ IxIx ∑ IxIy

∑ IxIy ∑ IyIy]



Interpreting the Eigenvalues

λ1

λ2

“Textured area” 
λ1 and λ2 are large, 

 λ1 ~ λ2

λ1 and λ2 are small “Edge”  
λ1 >> λ2

“Edge”  
λ2 >> λ1

“Flat” 
region

Classification of image points using eigenvalues of AT A

28-Nov-17



“Corner” 
C > 0

“Edge”  
C < 0

“Edge”  
C < 0

“Flat” 
region

|C| small

λ1

λ22
2121 )( λλαλλ +−=C

Cornerness

α: constant (0.04 to 0.06)

Harris Corner Detector


