Linear Algebra Primer

And a video discussion of linear algebra from EE263 is here (lectures 3 and 4):

https://see.stanford.edu/Course/EE263
Outline

• **Vectors and matrices**
 – Basic Matrix Operations
 – Determinants, norms, trace
 – Special Matrices
• **Transformation Matrices**
 – Homogeneous coordinates
 – Translation
• **Matrix inverse**
• **Matrix rank**
• Eigenvalues and Eigenvectors
• Matrix Calculus
Vectors and matrices are just collections of ordered numbers that represent something: movements in space, scaling factors, pixel brightness, etc. We’ll define some common uses and standard operations on them.

Outline

• Vectors and matrices
 – Basic Matrix Operations
 – Determinants, norms, trace
 – Special Matrices
• Transformation Matrices
 – Homogeneous coordinates
 – Translation
• Matrix inverse
• Matrix rank
• Eigenvalues and Eigenvectors
• Matrix Calculus
Vector

• A column vector $\mathbf{v} \in \mathbb{R}^{n \times 1}$ where

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

• A row vector $\mathbf{v}^T \in \mathbb{R}^{1 \times n}$ where

$$\mathbf{v}^T = [v_1 \quad v_2 \quad \ldots \quad v_n]$$

T denotes the transpose operation
Vector

- We’ll default to column vectors in this class

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

- You’ll want to keep track of the orientation of your vectors when programming in python

- You can transpose a vector V in matlab by writing V'
 (But in class materials, we will always use V^\top to indicate transpose, and we will use V' to mean “V prime”)

5
Vectors have two main uses

- Vectors can represent an offset in 2D or 3D space
- Points are just vectors from the origin
- Data (pixels, gradients at an image keypoint, etc) can also be treated as a vector
- Such vectors don’t have a geometric interpretation, but calculations like “distance” can still have value
Matrix

- A matrix \(A \in \mathbb{R}^{m \times n} \) is an array of numbers with size \(m \) by \(n \), i.e. \(m \) rows and \(n \) columns.

\[
A = \begin{bmatrix}
 a_{11} & a_{12} & a_{13} & \ldots & a_{1n} \\
 a_{21} & a_{22} & a_{23} & \ldots & a_{2n} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & a_{m3} & \ldots & a_{mn}
\end{bmatrix}
\]

- If \(m = n \), we say that \(A \) is square.
MATLAB represents an image as a matrix of pixel brightnesses.

Note that the upper left corner is \((y, x) = (1, 1)\).
Color Images

- Grayscale images have one number per pixel, and are stored as an $m \times n$ matrix.
- Color images have 3 numbers per pixel – red, green, and blue brightnesses (RGB)
- Stored as an $m \times n \times 3$ matrix
Basic Matrix Operations

• We will discuss:
 – Addition
 – Scaling
 – Dot product
 – Multiplication
 – Transpose
 – Inverse / pseudoinverse
 – Determinant / trace
Matrix Operations

• Addition

\[
\begin{bmatrix}
a & b \\
c & d \\
\end{bmatrix} + \begin{bmatrix}
1 & 2 \\
3 & 4 \\
\end{bmatrix} = \begin{bmatrix}
a + 1 & b + 2 \\
c + 3 & d + 4 \\
\end{bmatrix}
\]

– Can only add a matrix with matching dimensions, or a scalar.

\[
\begin{bmatrix}
a & b \\
c & d \\
\end{bmatrix} + 7 = \begin{bmatrix}
a + 7 & b + 7 \\
c + 7 & d + 7 \\
\end{bmatrix}
\]

• Scaling

\[
\begin{bmatrix}
a & b \\
c & d \\
\end{bmatrix} \times 3 = \begin{bmatrix}
3a & 3b \\
3c & 3d \\
\end{bmatrix}
\]
Vectors

• **Norm** \[\|x\|_2 = \sqrt{\sum_{i=1}^{n} x_i^2}. \]

• More formally, a norm is any function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) that satisfies 4 properties:

 • **Non-negativity:** For all \(x \in \mathbb{R}^n, f(x) \geq 0 \)
 • **Definiteness:** \(f(x) = 0 \) if and only if \(x = 0 \).
 • **Homogeneity:** For all \(x \in \mathbb{R}^n, t \in \mathbb{R}, f(tx) = |t| f(x) \)
 • **Triangle inequality:** For all \(x, y \in \mathbb{R}^n, f(x + y) \leq f(x) + f(y) \)
Matrix Operations

- **Example Norms**
 \[\|x\|_1 = \sum_{i=1}^{n} |x_i| \]
 \[\|x\|_\infty = \max_i |x_i| \]

- **General \(\ell_p \) norms:**
 \[\|x\|_p = \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p} \]
Matrix Operations

• Inner product (dot product) of vectors
 – Multiply corresponding entries of two vectors and add up the result
 – $x \cdot y$ is also $|x| |y| \cos(\text{the angle between } x \text{ and } y)$

$$x^T y = \begin{bmatrix} x_1 & \ldots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \sum_{i=1}^{n} x_i y_i \quad \text{(scalar)}$$
Matrix Operations

• Inner product (dot product) of vectors
 – If B is a unit vector, then $A \cdot B$ gives the length of A which lies in the direction of B
Matrix Operations

• The product of two matrices

\[
A \in \mathbb{R}^{m \times n} \\
B \in \mathbb{R}^{n \times p}
\]

\[
C = AB \in \mathbb{R}^{m \times p}
\]

\[
C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}
\]

\[
C = AB = \begin{bmatrix}
 \vdots & a_1^T & \vdots \\
 \vdots & a_2^T & \vdots \\
 \vdots & \vdots & \vdots \\
 \vdots & a_m^T & \vdots \\
\end{bmatrix}
\begin{bmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_p \\
\end{bmatrix}
= \begin{bmatrix}
 a_1^T b_1 & a_1^T b_2 & \cdots & a_1^T b_p \\
 a_2^T b_1 & a_2^T b_2 & \cdots & a_2^T b_p \\
 \vdots & \vdots & \ddots & \vdots \\
 a_m^T b_1 & a_m^T b_2 & \cdots & a_m^T b_p \\
\end{bmatrix}
\]
Matrix Operations

• Multiplication

• The product AB is:

• Each entry in the result is (that row of A) dot product with (that column of B)

• Many uses, which will be covered later
Matrix Operations

• Multiplication example:

\[
\begin{pmatrix}
0 & 2 \\
4 & 6
\end{pmatrix}
\begin{pmatrix}
1 & 3 \\
5 & 7
\end{pmatrix}
\]

Each entry of the matrix product is made by taking the dot product of the corresponding row in the left matrix, with the corresponding column in the right one.

\[
0 \cdot 3 + 2 \cdot 7 = 14
\]
Matrix Operations

• The product of two matrices

Matrix multiplication is associative: \((AB)C = A(BC)\).

Matrix multiplication is distributive: \(A(B + C) = AB + AC\).

Matrix multiplication is, in general, \textit{not} commutative; that is, it can be the case that \(AB \neq BA\). (For example, if \(A \in \mathbb{R}^{m \times n}\) and \(B \in \mathbb{R}^{n \times q}\), the matrix product \(BA\) does not even exist if \(m\) and \(q\) are not equal!)
Matrix Operations

• Powers
 – By convention, we can refer to the matrix product AA as A^2, and AAA as A^3, etc.
 – Obviously only square matrices can be multiplied that way
Matrix Operations

• Transpose – flip matrix, so row 1 becomes column 1

\[
\begin{bmatrix}
0 & 1 & \ldots
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 1 \\
2 & 3 \\
4 & 5
\end{bmatrix}^T =
\begin{bmatrix}
0 & 2 & 4 \\
1 & 3 & 5
\end{bmatrix}
\]

• A useful identity:

\[
(ABC)^T = C^T B^T A^T
\]
Matrix Operations

• Determinant
 – \(\det(A) \) returns a scalar
 – Represents area (or volume) of the parallelogram described by the vectors in the rows of the matrix
 – For \(A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \), \(\det(A) = ad - bc \)
 – Properties:
 \[
 \det(AB) = \det(A) \det(B) \\
 \det(AB) = \det(BA) \\
 \det(A^{-1}) = \frac{1}{\det(A)} \\
 \det(A^T) = \det(A) \\
 \det(A) = 0 \iff A \text{ is singular}
 \]
Matrix Operations

• Trace

\[\text{tr}(A) = \text{sum of diagonal elements} \]

\[\text{tr}\left(\begin{bmatrix} 1 & 3 \\ 5 & 7 \end{bmatrix} \right) = 1 + 7 = 8 \]

– Invariant to a lot of transformations, so it’s used sometimes in proofs. (Rarely in this class though.)

– Properties:

\[\text{tr}(AB) = \text{tr}(BA) \]

\[\text{tr}(A + B) = \text{tr}(A) + \text{tr}(B) \]
Matrix Operations

• Vector Norms

\[\| x \|_1 = \sum_{i=1}^{n} |x_i| \]

\[\| x \|_\infty = \max_i |x_i| \]

\[\| x \|_2 = \sqrt{\sum_{i=1}^{n} x_i^2} \]

\[\| x \|_p = \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p} \]

• Matrix norms: Norms can also be defined for matrices, such as

\[\| A \|_F = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}^2} = \sqrt{\text{tr}(A^T A)} \]
Special Matrices

• Identity matrix \mathbf{I}
 – Square matrix, 1’s along diagonal, 0’s elsewhere
 – $\mathbf{I} \cdot \text{[another matrix]} = \text{[that matrix]}

• Diagonal matrix
 – Square matrix with numbers along diagonal, 0’s elsewhere
 – A diagonal $\cdot \text{[another matrix]}$ scales the rows of that matrix
Special Matrices

- Symmetric matrix
 \[A^T = A \]
 \[
 \begin{bmatrix}
 1 & 2 & 5 \\
 2 & 1 & 7 \\
 5 & 7 & 1
 \end{bmatrix}
 \]

- Skew-symmetric matrix
 \[A^T = -A \]
 \[
 \begin{bmatrix}
 0 & -2 & -5 \\
 2 & 0 & -7 \\
 5 & 7 & 0
 \end{bmatrix}
 \]
Outline

• Vectors and matrices
 – Basic Matrix Operations
 – Determinants, norms, trace
 – Special Matrices
• Transformation Matrices
 – Homogeneous coordinates
 – Translation
• Matrix inverse
• Matrix rank
• Eigenvalues and Eigenvectors
• Matrix Calculus

Matrix multiplication can be used to transform vectors. A matrix used in this way is called a transformation matrix.
Transformation

- Matrices can be used to transform vectors in useful ways, through multiplication: \(x' = Ax \)
- Simplest is scaling:

\[
\begin{bmatrix}
 s_x & 0 \\
 0 & s_y
\end{bmatrix} \times \begin{bmatrix}
 x \\
 y
\end{bmatrix} = \begin{bmatrix}
 s_xx \\
 s_yy
\end{bmatrix}
\]

(Verify to yourself that the matrix multiplication works out this way)
Rotation

• How can you convert a vector represented in frame “0” to a new, rotated coordinate frame “1”?
Rotation

• How can you convert a vector represented in frame “0” to a new, rotated coordinate frame “1”?

• Remember what a vector is:
 \[
 \begin{bmatrix}
 \text{component in direction of the frame’s x axis}, & \text{component in direction of y axis}
 \end{bmatrix}
 \]
Rotation

• So to rotate it we must produce this vector:
 \[
 \text{[component in direction of new x axis, component in direction of new y axis]}
 \]
• We can do this easily with dot products!
• New x coordinate is [original vector] \textbf{dot} [the new x axis]
• New y coordinate is [original vector] \textbf{dot} [the new y axis]
Rotation

• Insight: this is what happens in a matrix*vector multiplication
 – Result x coordinate is:
 \[\text{original vector} \dot \text{matrix row 1} \]
 – So matrix multiplication can rotate a vector \(p \):

\[
R \times p = \text{rotated } p'
\]

\[
R = \begin{bmatrix}
.707 & .707 \\
-.707 & .707
\end{bmatrix}
\]

\[
p = \begin{bmatrix}
px \\
py
\end{bmatrix}
\]

\[
p' = \begin{bmatrix}
px' \\
py'
\end{bmatrix}
\]
Rotation

- Suppose we express a point in the new coordinate system which is rotated left.
- If we plot the result in the original coordinate system, we have rotated the point right.

Thus, rotation matrices can be used to rotate vectors. We’ll usually think of them in that sense— as operators to rotate vectors.
2D Rotation Matrix Formula

Counter-clockwise rotation by an angle θ

$$x' = \cos \theta \ x - \sin \theta \ y$$
$$y' = \cos \theta \ y + \sin \theta \ x$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$P' = R \ P$$
Transformation Matrices

• Multiple transformation matrices can be used to transform a point:
 \(p' = R_2 R_1 S p \)
Transformation Matrices

- Multiple transformation matrices can be used to transform a point:
 \[p' = R_2 R_1 S \ p \]

- The effect of this is to apply their transformations one after the other, from right to left.

- In the example above, the result is
 \((R_2 (R_1 (S \ p))) \)
Transformation Matrices

- Multiple transformation matrices can be used to transform a point:
 \(p' = R_2 R_1 S \ p \)

- The effect of this is to apply their transformations one after the other, from **right to left**.

- In the example above, the result is
 \((R_2 (R_1 (S \ p))) \)

- The result is exactly the same if we multiply the matrices first, to form a single transformation matrix:
 \(p' = (R_2 R_1 S) \ p \)
Homogeneous system

• In general, a matrix multiplication lets us linearly combine components of a vector

\[
\begin{bmatrix}
a & b \\
c & d \\
\end{bmatrix} \times \begin{bmatrix}
x \\
y \\
\end{bmatrix} = \begin{bmatrix}
ax + by \\
cx + dy \\
\end{bmatrix}
\]

– This is sufficient for scale, rotate, skew transformations.
– But notice, we can’t add a constant! 😞
Homogeneous system

– The (somewhat hacky) solution? Stick a “1” at the end of every vector:

\[
\begin{bmatrix}
a & b & c \\
d & e & f \\
0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1 \\
\end{bmatrix}
=
\begin{bmatrix}
ax + by + c \\
dx + ey + f \\
1 \\
\end{bmatrix}
\]

– Now we can rotate, scale, and skew like before, AND translate (note how the multiplication works out, above)

– This is called “homogeneous coordinates”
Homogeneous system

– In homogeneous coordinates, the multiplication works out so the rightmost column of the matrix is a vector that gets added.

\[
\begin{bmatrix}
 a & b & c \\
 d & e & f \\
 0 & 0 & 1 \\
\end{bmatrix}
\times
\begin{bmatrix}
 x \\
 y \\
 1 \\
\end{bmatrix}
=
\begin{bmatrix}
 ax + by + c \\
 dx + ey + f \\
 1 \\
\end{bmatrix}
\]

– Generally, a homogeneous transformation matrix will have a bottom row of [0 0 1], so that the result has a “1” at the bottom too.
Homogeneous system

• One more thing we might want: to divide the result by something
 – Matrix multiplication can’t actually divide
 – So, by convention, in homogeneous coordinates, we’ll divide the result by its last coordinate after doing a matrix multiplication

$$\begin{bmatrix} x \\ y \\ 7 \end{bmatrix} \Rightarrow \begin{bmatrix} x/7 \\ y/7 \\ 1 \end{bmatrix}$$
2D Translation

P → P'

Linear Algebra Review
2D Translation using Homogeneous Coordinates

\[P = (x, y) \rightarrow (x, y, 1) \]

\[t = (t_x, t_y) \rightarrow (t_x, t_y, 1) \]

\[
\begin{bmatrix}
x + t_x \\
y + t_y \\
1
\end{bmatrix}
\begin{bmatrix}
\bar{x} \\
y \\
1
\end{bmatrix} = \begin{bmatrix}
x' \\
y' \\
1
\end{bmatrix}
\]
2D Translation using Homogeneous Coordinates

\[P = (x, y) \rightarrow (x, y, 1) \]
\[t = (t_x, t_y) \rightarrow (t_x, t_y, 1) \]

\[
P' \rightarrow \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ \chi \\ y \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}
\]
2D Translation using Homogeneous Coordinates

\[P = (x, y) \rightarrow (x, y, 1) \]
\[t = (t_x, t_y) \rightarrow (t_x, t_y, 1) \]

\[
P' \rightarrow \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \bar{x} \\ y \\ 1 \end{bmatrix}
\]
2D Translation using Homogeneous Coordinates

\[\mathbf{P} = (x, y) \rightarrow (x, y, 1) \]
\[\mathbf{t} = (t_x, t_y) \rightarrow (t_x, t_y, 1) \]

\[\mathbf{P}' \rightarrow \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \bar{x} \\ \bar{y} \\ 1 \end{bmatrix} \]
2D Translation using Homogeneous Coordinates

\[\mathbf{P} = (x, y) \rightarrow (x, y, 1) \]
\[\mathbf{t} = (t_x, t_y) \rightarrow (t_x, t_y, 1) \]

\[
P' \rightarrow \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} I & \mathbf{t} \\ 0 & 1 \end{bmatrix} \cdot \mathbf{P} = T \cdot \mathbf{P}
\]
Scaling
Scaling Equation

\[\mathbf{P} = (x, y) \rightarrow \mathbf{P}' = (s_x x, s_y y) \]

\[\mathbf{P} = (x, y) \rightarrow (x, y, 1) \]

\[\mathbf{P}' = (s_x x, s_y y) \rightarrow (s_x x, s_y y, 1) \]
Scaling Equation

\[P = (x, y) \rightarrow P' = (s_x x, s_y y) \]

\[P = (x, y) \rightarrow (x, y, 1) \]

\[P' = (s_x x, s_y y) \rightarrow (s_x x, s_y y, 1) \]

\[P' = \begin{bmatrix} s_x x \\ s_y y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x \\ s_y \\ 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \]
Scaling Equation

\[P = (x, y) \rightarrow P' = (s_x x, s_y y) \]

\[P = (x, y) \rightarrow (x, y, 1) \]

\[P' = (s_x x, s_y y) \rightarrow (s_x x, s_y y, 1) \]

\[
\begin{bmatrix}
 s_x x \\
 s_y y \\
 1
\end{bmatrix}
= \begin{bmatrix}
 s_x & 0 & 0 \\
 0 & s_y & 0 \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
= \begin{bmatrix}
 S' & 0 \\
 0 & 1
\end{bmatrix}
\cdot P = S \cdot P
\]
Scaling & Translating

\[P'' = T \cdot P' = T \cdot (S \cdot P) = T \cdot S \cdot P \]

\[P' = S \cdot P \]

\[P'' = T \cdot P' \]
Scaling & Translating

\[P'' = T \cdot S \cdot P = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \]
Scaling & Translating

\[P'' = T \cdot S \cdot P = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \]

\[= \begin{bmatrix} s_x & 0 & t_x \\ 0 & s_y & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x x + t_x \\ s_y y + t_y \\ 1 \end{bmatrix} = \begin{bmatrix} S & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \]
Translating & Scaling
versus Scaling & Translating

\[
P''' = T \cdot S \cdot P = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & t_x \\ 0 & s_y & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x x + t_x \\ s_y y + t_y \\ 1 \end{bmatrix}
\]
Translating & Scaling
!= Scaling & Translating

\[P'''' = T \cdot S \cdot P = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & t_x \\ 0 & s_y & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x x + t_x \\ s_y y + t_y \\ 1 \end{bmatrix} \]

\[P'''' = S \cdot T \cdot P = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x x + t_x \\ s_y y + t_y \\ 1 \end{bmatrix} \]
Translating & Scaling

\[P''' = T \cdot S \cdot P = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & t_x \\ 0 & s_y & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x x + t_x \\ s_y y + t_y \\ 1 \end{bmatrix} \]

\[P''' = S \cdot T \cdot P = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & s_x t_x \\ 0 & s_y & s_y t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x x + s_x t_x \\ s_y y + s_y t_y \\ 1 \end{bmatrix} \]
Rotation

P

P'
Rotation Equations

Counter-clockwise rotation by an angle θ

\[x' = \cos \theta \, x - \sin \theta \, y \]
\[y' = \cos \theta \, y + \sin \theta \, x \]

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix}
=
\begin{bmatrix}
 \cos \theta & -\sin \theta \\
 \sin \theta & \cos \theta
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]

\[P' = R \, P \]
Rotation Matrix Properties

\[
\begin{bmatrix}
x' \\
y'
\end{bmatrix} = \begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}\begin{bmatrix}
x \\
y
\end{bmatrix}
\]

A 2D rotation matrix is 2x2

Note: \(R \) belongs to the category of normal matrices and satisfies many interesting properties:

\[
R \cdot R^T = R^T \cdot R = I
\]

\[
det(R) = 1
\]
Rotation Matrix Properties

• Transpose of a rotation matrix produces a rotation in the opposite direction

\[R \cdot R^T = R^T \cdot R = I \]
\[\det(R) = 1 \]

• The rows of a rotation matrix are always mutually perpendicular (a.k.a. orthogonal) unit vectors
 – (and so are its columns)
Scaling + Rotation + Translation

\[P' = (T \ R \ S) \ P \]

\[
P' = T \cdot R \cdot S \cdot P = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} =
\]

\[
\begin{bmatrix} \cos \theta & -\sin \theta & t_x \\ \sin \theta & \cos \theta & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} =
\]

This is the form of the general-purpose transformation matrix
Announcements

• HW0 will be released this Friday night
Outline

• Vectors and matrices
 – Basic Matrix Operations
 – Determinants, norms, trace
 – Special Matrices
• Transformation Matrices
 – Homogeneous coordinates
 – Translation
• Matrix inverse
• Matrix rank
• Eigenvalues and Eigenvectors
• Matrix Calculate

The inverse of a transformation matrix reverses its effect.
Inverse

• Given a matrix A, its inverse A^{-1} is a matrix such that $AA^{-1} = A^{-1}A = I$

• E.g. $\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{3} \end{bmatrix}$

• Inverse does not always exist. If A^{-1} exists, A is invertible or non-singular. Otherwise, it’s singular.

• Useful identities, for matrices that are invertible:

$$(A^{-1})^{-1} = A$$
$$(AB)^{-1} = B^{-1}A^{-1}$$

$$A^{-T} \triangleq (A^T)^{-1} = (A^{-1})^T$$
Outline

• Vectors and matrices
 – Basic Matrix Operations
 – Determinants, norms, trace
 – Special Matrices
• Transformation Matrices
 – Homogeneous coordinates
 – Translation
• Matrix inverse
• **Matrix rank**
• Eigenvalues and Eigenvectors
• Matrix Calculate

The rank of a transformation matrix tells you how many dimensions it transforms a vector to.
Linear independence

• Suppose we have a set of vectors v_1, \ldots, v_n
• If we can express v_1 as a linear combination of the other vectors $v_2 \ldots v_n$, then v_1 is linearly dependent on the other vectors.
 – The direction v_1 can be expressed as a combination of the directions $v_2 \ldots v_n$. (E.g. $v_1 = .7 \ v_2 -.7 \ v_4$)
Linear independence

- Suppose we have a set of vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$
- If we can express \mathbf{v}_1 as a linear combination of the other vectors $\mathbf{v}_2 \ldots \mathbf{v}_n$, then \mathbf{v}_1 is linearly dependent on the other vectors.
 - The direction \mathbf{v}_1 can be expressed as a combination of the directions $\mathbf{v}_2 \ldots \mathbf{v}_n$. (E.g. $\mathbf{v}_1 = 0.7 \mathbf{v}_2 - 0.7 \mathbf{v}_4$)
- If no vector is linearly dependent on the rest of the set, the set is linearly independent.
 - Common case: a set of vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ is always linearly independent if each vector is perpendicular to every other vector (and non-zero)
Linear independence

Linearly independent set Not linearly independent
Matrix rank

• Column/row rank

\[\text{col-rank}(A) = \text{the maximum number of linearly independent column vectors of } A\]
\[\text{row-rank}(A) = \text{the maximum number of linearly independent row vectors of } A\]

– Column rank always equals row rank

• Matrix rank

\[\text{rank}(A) \triangleq \text{col-rank}(A) = \text{row-rank}(A)\]
Matrix rank

• For transformation matrices, the rank tells you the dimensions of the output
• E.g. if rank of A is 1, then the transformation $p' = Ap$

 maps points onto a line.

• Here’s a matrix with rank 1:

\[
\begin{bmatrix}
1 & 1 \\
2 & 2
\end{bmatrix} \times \begin{bmatrix}
x \\
y
\end{bmatrix} = \begin{bmatrix}
x + y \\
2x + 2y
\end{bmatrix}
\]

All points get mapped to the line $y = 2x$
Matrix rank

- If an $m \times m$ matrix is rank m, we say it’s “full rank”
 - Maps an $m \times 1$ vector uniquely to another $m \times 1$ vector
 - An inverse matrix can be found
- If rank $< m$, we say it’s “singular”
 - At least one dimension is getting collapsed. No way to look at the result and tell what the input was
 - Inverse does not exist
- Inverse also doesn’t exist for non-square matrices