Linear Algebra Primer
(cont’)

Note: the slides are based on CS131 (Juan Carlos et al) and EE263 (by Stephen Boyd et al) at Stanford. Reorganized, revised, and typed by Hao Su
Outline

- Geometry of Linear Algebra
 - Vector spaces
 - Basis, dimension
 - Nullspace, range
- Spectral Decomposition
 - Eigenpairs
 - Spectral theory
- Singular Value Decomposition
 - Geometry of linear maps
 - Singular values, singular vectors
 - Pseudo-inverse
- Matrix Calculus
 - Gradient
Outline

- Geometry of Linear Algebra
 - Vector spaces
 - Basis, dimension
 - Nullspace, range
- Spectral Decomposition
 - Eigenpairs
 - Spectral theory
- Singular Value Decomposition
 - Geometry of linear maps
 - Singular values, singular vectors
 - Pseudo-inverse
- Matrix Calculus
 - Gradient
a vector space or linear space (over the reals) consists of

- a set \mathcal{V}
- a vector sum $+: \mathcal{V} \times \mathcal{V} \rightarrow \mathcal{V}$
- a scalar multiplication: $\mathbb{R} \times \mathcal{V} \rightarrow \mathcal{V}$
- a distinguished element $0 \in \mathcal{V}$

which satisfy a list of properties
Vector space axioms

- \(x + y = y + x, \forall x, y \in V \)
- \((x + y) + z = x + (y + z), \forall x, y, z \in V \)
- \(0 + x = x, x \in V \)
- \(\forall x \in V \) \(\exists (-x) \in V \) s.t. \(x + (-x) = 0 \)
- \((\alpha \beta)x = \alpha(\beta x), \ \forall \alpha, \beta \in \mathbb{R} \ \forall x \in V \)
- \(\alpha(x + y) = \alpha x + \alpha y, \ \forall \alpha \in \mathbb{R} \ \forall x, y \in V \)
- \((\alpha + \beta)x = \alpha x + \beta x, \ \forall \alpha, \beta \in \mathbb{R} \ \forall x \in V \)
- \(1x = x, \ \forall x \in V \)
Examples

- $\mathcal{V}_1 = \mathbb{R}^n$, with standard (componentwise) vector addition and scalar multiplication
- $\mathcal{V}_2 = \{0\}$ (where $0 \in \mathbb{R}^n$)
- $\mathcal{V}_3 = \text{span}(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k)$ where

 $$\text{span}(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k) = \{ \alpha_1 \mathbf{v}_1 + \cdots + \alpha_k \mathbf{v}_k | \alpha_i \in \mathbb{R} \}$$

 and $\mathbf{v}_1, \ldots, \mathbf{v}_k \in \mathbb{R}^n$
Subspaces

- a **subspace** of a vector space is a **subset** of a vector space which is itself a vector space
- roughly speaking, a subspace is closed under vector addition and scalar multiplication
- examples V_1, V_3, V_3 above are subspaces of \mathbb{R}^n
Vector spaces of functions

- \(\mathcal{V}_4 = \{ x : \mathbb{R}_+ \to \mathbb{R}^n | x \text{ is differentiable} \} \), where vector sum is sum of functions:
 \[(x + z)(t) = x(t) + z(t)\]
 and scalar multiplication is defined by
 \[(\alpha x)(t) = \alpha x(t)\]
 (a point in \(\mathcal{V}_4 \) is a trajectory in \(\mathbb{R}^n \))

- \(\mathcal{V}_5 = \{ x \in \mathcal{V}_4 | \dot{x} = Ax \} \)
 (points in \(\mathcal{V}_5 \) are trajectories of the linear system \(\dot{x} = Ax \))

- \(\mathcal{V}_5 \) is a subspace of \(\mathcal{V}_4 \)
Basis and dimension

A set of vectors \(\{v_1, v_2, \ldots, v_k\} \) is called a basis for a vector space \(V \) if

\[
V = \text{span}(v_1, v_2, \ldots, v_k)
\]

and

\[\{v_1, v_2, \ldots, v_k\} \text{ is independent}\]

- equivalently, every \(v \in V \) can be uniquely expressed as
 \[
 v = \alpha_1 v_1 + \cdots + \alpha_k v_k
 \]
- for a given vector space \(V \), the number of vectors in any basis is the same
- number of vectors in any basis is called the dimension of \(V \), denoted \(\dim V \)
Nullspace of a matrix

the nullspace of $A \in \mathbb{R}^{m \times n}$ is defined as

$$\text{null}(A) = \{x \in \mathbb{R}^n | Ax = 0\}$$

- $\text{null}(A)$ is set of vectors mapped to zero by $y = Ax$
- $\text{null}(A)$ is set of vectors orthogonal to all rows of A

$\text{null}(A)$ gives ambiguity in x given $y = Ax$:
- if $y = Ax$ and $z \in \text{null}(A)$, then $y = A(x + z)$
- conversely, if $y = Ax$ and $y = A\tilde{x}$, then $\tilde{x} = x + z$ for some $z \in \text{null}(A)$

$\text{null}(A)$ is also written $\mathcal{N}(A)$
Zero nullspace

A is called one-to-one if 0 is the only element of its null space

\[\text{null}(A) = \{0\} \]

Equivalently,

► x can always be uniquely determined from \(y = Ax \) (i.e., the linear transformation \(y = Ax \) doesn't 'lose' information)
► mapping from \(x \) to \(Ax \) is one-to-one: different \(x \)'s map to different \(y \)'s
► columns of \(A \) are independent (hence, a basis for their span)
► \(A \) has a left inverse, i.e., there is a matrix \(B \in \mathbb{R}^{n \times m} \) s.t. \(BA = I \)
► \(A^T A \) is invertible
Range of a matrix

the range of $A \in \mathbb{R}^{m \times n}$ is defined as

\[
\text{range}(A) = \{Ax | x \in \mathbb{R}^n\} \subseteq \mathbb{R}^m
\]

\text{range}(A) can be interpreted as

- the set of vectors that can be ’hit’ by linear mapping $y = Ax$
- the span of columns of A
- the set of vectors y for which $Ax = y$ has a solution

\text{range}(A) is also written $\mathcal{R}(A)$
Outline

- Geometry of Linear Algebra
 - Vector spaces
 - Basis, dimension
 - Nullspace, range
- Spectral Decomposition
 - Eigenpairs
 - Spectral theory
- Singular Value Decomposition
 - Geometry of linear maps
 - Singular values, singular vectors
 - Pseudo-inverse
- Matrix Calculus
 - Gradient
 - Jacobian
 - Hessian
an eigenvector x of a linear transformation A is a non-zero vector that, when A is applied to it, does not change direction

$$Ax = \lambda x, \quad x \neq 0.$$

applying A to the vector only scales the vector by the scalar value λ, called an eigenvalue.
we want to find all the eigenvalues of A:

$$Ax = \lambda x, \quad x \neq 0.$$

which can be written as:

$$Ax = (\lambda I)x, \quad x \neq 0.$$

therefore:

$$(\lambda I - A)x = 0, \quad x \neq 0.$$
Eigenvector and Eigenvalue

we can solve for eigenvalues by solving:

$$(\lambda I - A)x = 0, \quad x \neq 0.$$

above means that $\lambda I - A$ is not full rank, thus we can instead solve the above equation as:

$$|(\lambda I - A)| = 0.$$

this is called characteristic polynomial of an $n \times n$ matrix
Properties of Eigenvalues

- the trace of A is equal to the sum of its eigenvalues:

$$\text{tr}(A) = \sum_{i=1}^{n} \lambda_i$$

- the determinant of A is equal to the product of its eigenvalues

$$|A| = \prod_{i=1}^{n} \lambda_i$$

- the rank of A is equal to the number of non-zero eigenvalues of A

- for general A, it can be proved by Schur Decomposition easily (omitted)

- for diagonalizable A, the proof is straightforward
Diagonalization

► if matrix A can be diagonalized, that is,

$$P^{-1}AP = \begin{pmatrix}
\lambda_1 & 0 & \ldots & 0 \\
0 & \lambda_2 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_n
\end{pmatrix}$$

► then:

$$AP = P \begin{pmatrix}
\lambda_1 & 0 & \ldots & 0 \\
0 & \lambda_2 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_n
\end{pmatrix}$$

► write $P = [\vec{\alpha}_1, \ldots, \vec{\alpha}_n]$, the above equation can be rewritten as

$$A\vec{\alpha}_i = \lambda_i \vec{\alpha}_i$$
here is a sufficient (but not necessary) condition
assuming all λ_i’s are unique, by eigenvalue equation:

$$AV = VD$$

$$A = VDV^{-1}$$

why?
- eigenvectors associated with different eigenvalues are linearly independent, thus A invertible
- in fact, if A is symmetric, V would be orthonormal and $A = VDV^T$
Diagonalization (Summary)

- an $n \times n$ matrix A is diagonalizable if it has n linearly independent (in fact, orthogonal) eigenvectors.
- matrices with n distinct eigenvalues are diagonalizable
Symmetric matrices

Properties

- for a real symmetric matrix A, all the eigenvalues are real
- A is diagonalizable
- the eigenvectors of A are orthonormal

\[A = VDV^T \]
Symmetric matrices

Therefore

\[x^T Ax = x^T VDV^T x = y^T Dy = \sum_{i=1}^{n} \lambda_i y_i^2 \]

where \(y = V^T x \)

So, if we wanted to find the vector \(x \) that

\[\max_{x \in \mathbb{R}^n} x^T Ax \quad \text{subject to} \quad \|x\|_2^2 = 1 \]
Symmetric matrices

Therefore

\[x^T Ax = x^T VDV^T x = y^T Dy = \sum_{i=1}^{n} \lambda_i y_i^2 \]

where \(y = V^T x \)

So, if we wanted to find the vector \(x \) that

\[
\max_{x \in \mathbb{R}^n} x^T Ax \quad \text{subject to} \quad \|x\|_2^2 = 1
\]

is the same as finding the eigenvector that corresponds to the largest eigenvalue.
we call an eigenvalue λ and an associated eigenvector an eigenpair.

the space of vectors where $(A - \lambda I)x = 0$ is often called the eigenspace of A associated with the eigenvalue λ.

the set of all eigenvalues of A is called its spectrum:

$$\sigma(A) = \{\lambda \in \mathbb{C} : \lambda I - A \text{ is singular}\}$$
spectral theory

- the magnitude of the largest eigenvalue (in magnitude) is called the spectral radius

\[\rho(A) = \max\{|\lambda_1|, \ldots, |\lambda_n|\} \]
Outline

- Geometry of Linear Algebra
 - Vector spaces
 - Basis, dimension
 - Nullspace, range
- Spectral Decomposition
 - Eigenpairs
 - Spectral theory
- Singular Value Decomposition
 - Geometry of linear maps
 - Singular values, singular vectors
 - Pseudo-inverse
- Matrix Calculus
 - Gradient
Geometry of linear maps

Every matrix $A \in \mathbb{R}^{m \times n}$ maps the unit ball in \mathbb{R}^n to an ellipsoid in \mathbb{R}^m

$$S = \{ x \in \mathbb{R}^n \mid \|x\| \leq 1 \} \quad AS = \{ Ax \mid x \in S \}$$
first, assume $A \in \mathbb{R}^{m \times n}$ is skinny and full rank

the numbers $\sigma_1, \ldots, \sigma_n > 0$ are called the singular values of A

the vectors u_1, \ldots, u_n are called the left or output singular vectors of A. These are unit vectors along the principal semiaxes of $A^T S$

the vectors v_1, \ldots, v_n are called the right or input singular vectors of A. These map to the principal semiaxes, so that

$$A v_i = \sigma_i u_i$$
Thin singular value decomposition

\[Av_i = \sigma_i u_i \text{ for } 1 \leq i \leq n \]

For \(A \in \mathbb{R}^{m \times n} \) with \(\text{rank}(A) = n \), let

\[U = [u_1 \ u_2 \ \ldots \ u_n] \quad \Sigma = \begin{bmatrix} \sigma_1 \\ & \sigma_2 \\ & & \ddots \\ & & & \sigma_n \end{bmatrix} \quad V = [v_1 \ v_2 \ \ldots \ v_n] \]

the above equation is \(AV = U \Sigma \) and since \(V \) is orthogonal

\[A = U \Sigma V^T \]

called the thin SVD of \(A \)
Thin SVD

For $A \in \mathbb{R}^{m \times n}$ with $\text{rank}(A) = r$, the thin SVD is

$$A = U \Sigma V^T = \sum_{i=1}^{r} \sigma_i u_i v_i^T$$

Here

- $U \in \mathbb{R}^{m \times r}$ has orthonormal columns,
- $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_r)$, where $\sigma_1 \geq \cdots \geq \sigma_r > 0$
- $V \in \mathbb{R}^{n \times r}$ has orthonormal columns
SVD and eigenvectors

\[
A^T A = (U \Sigma V^T)^T (U \Sigma V^T) = V \Sigma^2 V^T
\]

hence:

- \(v_i\) are eigenvectors of \(A^T A\) (corresponding to nonzero eigenvalues)
- \(\sigma_i = \sqrt{\lambda_i(A^T A)}\) (and \(\lambda_i(A^T A) = 0\) for \(i > r\))
- \(\|A\| = \sigma_1\)
SVD and eigenvectors

similarly,

\[AA^T = (U\Sigma V^T)(U\Sigma V^T)^T = U\Sigma^2 U^T \]

hence:

- \(u_i \) are eigenvectors of \(AA^T \) (corresponding to nonzero eigenvalues)
- \(\sigma_i = \sqrt{\lambda_i(AA^T)} \) (and \(\lambda_i(AA^T) = 0 \) for \(i > r \))
SVD and range

\[A = U \Sigma V^T \]

- \(u_1, \ldots, u_r \) are orthonormal basis for \(\text{range}(A) \)
- \(v_1, \ldots, v_r \) are orthonormal basis for \(\text{null}(A)^\perp \)
Interpretations

\[A = U\Sigma V^T = \sum_{i=1}^{r} \sigma_i u_i v_i^T \]

linear mapping \(y = Ax \) can be decomposed as

- compute coefficients of \(x \) along input directions \(v_1, \ldots, v_r \)
- scale coefficients by \(\sigma_i \)
- reconstitute along output directions \(u_1, \ldots, u_r \)

difference with eigenvalue decomposition for symmetric \(A \): input and output directions are different
General pseudo-inverse

if \(A \neq 0 \) has SVD \(A = U\Sigma V^T \), the pseudo-inverse or Moore-Penrose inverse of \(A \) is

\[
A^\dagger = V\Sigma^{-1}U^T
\]

▶ if \(A \) is skinny and full rank,

\[
A^\dagger = (A^T A)^{-1} A^T
\]
gives the least-squares approximate solution \(x_{ls} = A^\dagger y \)

▶ if \(A \) is fat and full rank,

\[
A^\dagger = A^T (AA^T)^{-1}
\]
gives the least-norm solution \(x_{ln} = A^\dagger y \)
Full SVD

SVD of $A \in \mathbb{R}^{m \times n}$ with $\text{rank}(A) = r$

$$A = U_1 \Sigma_1 V_1^T = [u_1 \cdots u_r] \begin{bmatrix} \sigma_1 & \cdots & \cr & \ddots \cr \end{bmatrix} \begin{bmatrix} v_1^T \cr \vdots \cr v_r^T \end{bmatrix}$$

Add extra columns to U and V, and add zero rows/cols to Σ_1
Full SVD

- find $U_2 \in \mathbb{R}^{m \times (m-r)}$ such that $U = [U_1 \ U_2] \in \mathbb{R}^{m \times m}$ is orthogonal
- find $V_2 \in \mathbb{R}^{n \times (n-r)}$ such that $V = [V_1 \ V_2] \in \mathbb{R}^{n \times n}$ is orthogonal
- add zero rows/cols to Σ_1 to form $\Sigma \in \mathbb{R}^{m \times n}$

$$
\Sigma = \begin{bmatrix}
\Sigma_i & 0_{r \times (n-r)} \\
0_{(m-r) \times r} & 0_{(m-r) \times (n-r)}
\end{bmatrix}
$$

then the full SVD is

$$
A = U_1 \Sigma_1 V_1^T = [\ U_1 \ | \ U_2 \] \begin{bmatrix}
\Sigma_i & 0_{r \times (n-r)} \\
0_{(m-r) \times r} & 0_{(m-r) \times (n-r)}
\end{bmatrix} \begin{bmatrix}
V_1^T \\
V_2^T
\end{bmatrix}
$$

which is $A = U \Sigma V^T$
Image of unit ball under linear transformation

full SVD:

\[A = U\Sigma V^T \]

gives interpretation of \(y = Ax \)

- rotate (by \(V^T \))
- stretch along axes by \(\sigma_i \) (\(\sigma_i = 0 \) for \(i > r \))
- zero-pad (if \(m > n \)) or truncate (if \(m < n \)) to get \(m \)-vector
- rotate (by \(U \))
Outline

- Geometry of Linear Algebra
 - Vector spaces
 - Basis, dimension
 - Nullspace, range

- Spectral Decomposition
 - Eigenpairs
 - Spectral theory

- Singular Value Decomposition
 - Geometry of linear maps
 - Singular values, singular vectors
 - Pseudo-inverse

- Matrix Calculus
 - Gradient
Matrix calculus – the gradient

- let a function $f : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ take as input a matrix A of size $m \times n$ and returns a real value
- then the gradient of f:

$$\nabla_A f(A) \in \mathbb{R}^{m \times n} = \begin{bmatrix} \frac{\partial f(A)}{\partial A_{11}} & \frac{\partial f(A)}{\partial A_{12}} & \cdots & \frac{\partial f(A)}{\partial A_{1n}} \\ \frac{\partial f(A)}{\partial A_{21}} & \frac{\partial f(A)}{\partial A_{22}} & \cdots & \frac{\partial f(A)}{\partial A_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f(A)}{\partial A_{m1}} & \frac{\partial f(A)}{\partial A_{m2}} & \cdots & \frac{\partial f(A)}{\partial A_{mn}} \end{bmatrix}$$
Matrix calculus – the gradient

Properties

- $\nabla_x (f(x) + g(x)) = \nabla_x f(x) + \nabla_x g(x)$
- For $t \in \mathbb{R}$, $\nabla_x (tf(x)) = t\nabla_x f(x)$