Local Features
What we will learn today?

• Local invariant features
 — Motivation
 — Requirements, invariances

• Keypoint localization
 — Harris corner detector

• Local features
 — SIFT

• Feature Matching

Some background reading:
Rick Szeliski, Chapter 4.1.1; David Lowe, IJCV 2004
Image matching: a challenging problem
Image matching: a challenging problem

by Diva Sian

by swashford
Harder Case

by Diva Sian

by scgbt

Slide credit: Steve Seitz
Harder Still?

NASA Mars Rover images

Slide credit: Steve Seitz
Answer Below (Look for tiny colored squares)

NASA Mars Rover images with SIFT feature matches
(Figure by Noah Snavely)
Motivation for using local features

- Global representations have major limitations
- Instead, describe and match only local regions
- Increased robustness to
 - Occlusions
 - Articulation
 - Intra-category variations
General Approach

1. Find a set of distinctive keypoints

2. Define a region around each keypoint

3. Extract and normalize the region content

4. Compute a local descriptor from the normalized region

5. Match local descriptors

\[d(f_A, f_B) < T \]
Common Requirements

• Problem 1:
 – Detect the same point independently in both images

No chance to match!

We need a repeatable detector!
Common Requirements

• Problem 1:
 – Detect the same point independently in both images

• Problem 2:
 – For each point correctly recognize the corresponding one

We need a reliable and distinctive descriptor!
Invariance: Geometric Transformations
Invariance: Photometric Transformations

- Often modeled as a linear transformation:
 - Scaling + Offset
Requirements

• Region extraction needs to be **repeatable** and **accurate**
 – **Invariant** to translation, rotation, scale changes
 – **Robust** or **covariant** to out-of-plane (≈affine) transformations
 – **Robust** to lighting variations, noise, blur, quantization

• **Locality**: Features are local, therefore robust to occlusion and clutter.

• **Quantity**: We need a sufficient number of regions to cover the object.

• **Distinctiveness**: The regions should contain “interesting” structure.

• **Efficiency**: Close to real-time performance.
Many Existing Detectors Available

- Hessian & Harris [Beaudet ‘78], [Harris ‘88]
- Laplacian, DoG [Lindeberg ‘98], [Lowe ‘99]
- Harris-/Hessian-Laplace [Mikolajczyk & Schmid ‘01]
- Harris-/Hessian-Affine [Mikolajczyk & Schmid ‘04]
- EBR and IBR [Tuytelaars & Van Gool ‘04]
- MSER [Matas ‘02]
- Salient Regions [Kadir & Brady ‘01]
- Others...

- Those detectors have become a basic building block for many recent applications in Computer Vision.
What we will learn today?

• Local invariant features
 – Motivation
 – Requirements, invariances

• Keypoint localization
 – Harris corner detector

• Local features
 – SIFT

• Feature Matching

Some background reading:
Rick Szeliski, Chapter 4.1.1; David Lowe, IJCV 2004
Keypoint Localization

• Goals:
 – Repeatable detection
 – Precise localization
 – Interesting content

⇒ Look for two-dimensional signal changes
Finding Corners

- Key property:
 - In the region around a corner, image gradient has two or more dominant directions
- Corners are repeatable and distinctive

Corners as Distinctive Interest Points

• Design criteria
 – We should easily recognize the point by looking through a small window (locality)
 – Shifting the window in any direction should give a large change in intensity (good localization)

“flat” region: no change in all directions

“edge”: no change along the edge direction

“corner”: significant change in all directions
Corners versus edges

\[\sum I_x^2 \rightarrow \text{Large} \]
\[\sum I_y^2 \rightarrow \text{Large} \]
Corner

\[\sum I_x^2 \rightarrow \text{Small} \]
\[\sum I_y^2 \rightarrow \text{Large} \]
Edge

\[\sum I_x^2 \rightarrow \text{Small} \]
\[\sum I_y^2 \rightarrow \text{Small} \]
Nothing
Corners versus edges

\[\sum I_x^2 \rightarrow ?? \]
\[\sum I_y^2 \rightarrow ?? \]

Corner
Harris Detector Formulation

- Change of intensity for the shift \([u,v]\):

\[
E(u, v) = \sum_{x, y} w(x, y) \left[l(x+u, y+v) - l(x, y) \right]^2
\]

Window function

Shifted intensity

Intensity

Window function \(w(x,y) = \begin{cases} 1 \text{ in window}, & 0 \text{ outside} \\ \text{Gaussian} \end{cases}\)
Harris Detector Formulation

• This measure of change can be approximated by:

\[E(u,v) \approx [u \ v] \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} \]

where \(M \) is a 2×2 matrix computed from image derivatives:

\[M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \]

Gradient with respect to \(x \), times gradient with respect to \(y \)

Sum over image region – the area we are checking for corner

\[M = \begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} = \sum \begin{bmatrix} I_x \\ I_y \end{bmatrix} [I_x I_y] \]
Harris Detector Formulation

where M is a 2×2 matrix computed from image derivatives:

$$M = \sum_{x,y} w(x, y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Gradient with respect to x, times gradient with respect to y

Sum over image region – the area we are checking for corner

$$M = \begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} = \sum \begin{bmatrix} I_x \\ I_y \end{bmatrix} [I_x \ I_y]$$
What Does This Matrix Reveal?

• First, let’s consider an axis-aligned corner:

\[
M = \begin{bmatrix}
\sum I_x^2 & \sum I_x I_y \\
\sum I_x I_y & \sum I_y^2
\end{bmatrix} = \begin{bmatrix}
\lambda_1 & 0 \\
0 & \lambda_2
\end{bmatrix}
\]

Slide credit: David Jacobs
What Does This Matrix Reveal?

• First, let’s consider an axis-aligned corner:

\[M = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \]

• This means:
 – Dominant gradient directions align with \(x \) or \(y \) axis
 – If either \(\lambda \) is close to 0, then this is not a corner, so look for locations where both are large.

• What if we have a corner that is not aligned with the image axes?
General Case

• Since M is symmetric, we have

$$M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

(Eigenvalue decomposition)

• We can visualize M as an ellipse with axis lengths determined by the eigenvalues and orientation determined by R
Interpreting the Eigenvalues

- Classification of image points using eigenvalues of M:

 - λ_1 and λ_2 are large, $\lambda_1 \sim \lambda_2$; E increases in all directions
 - λ_1 and λ_2 are small; E is almost constant in all directions
 - $\lambda_1 >> \lambda_2$ (Edge)
 - $\lambda_2 >> \lambda_1$ (Corner)
 - "Flat" region

Slide credit: Kristen Grauman
Corner Response Function

\[\theta = \det(M) - \alpha \text{trace}(M)^2 = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2 \]

- Fast approximation
 - Avoid computing the eigenvalues
 - \(\alpha \): constant (0.04 to 0.06)
Window Function \(w(x,y) \)

\[
M = \sum_{x,y} w(x, y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}
\]

- **Option 1:** uniform window
 - Sum over square window
 \[
 M = \sum_{x,y} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}
 \]
 - Problem: not rotation invariant

- **Option 2:** Smooth with Gaussian
 - Gaussian already performs weighted sum
 \[
 M = g(\sigma) \ast \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}
 \]
 - Result is rotation invariant
Harris Detector: Workflow
Harris Detector: Workflow
- computer corner responses θ
Harris Detector: Workflow
- Resulting Harris points
Effect: A very precise corner detector.
Harris Detector – Responses [Harris88]
Harris Detector – Responses [Harris88]

• Results are well suited for finding stereo correspondences
Harris Detector: Properties

• Translation invariance?
Harris Detector: Properties

- Translation invariance
- Rotation invariance?

Corner response θ is invariant to image rotation
Harris Detector: Properties

- Translation invariance
- Rotation invariance
- Scale invariance?

Not invariant to image scale!

Corner

All points will be classified as *edges*!
So far: can localize in x-y, but not scale
How to find patch sizes at which f response is equal?

What is a good f?
Automatic Scale Selection

- Function responses for increasing scale (scale signature)
Automatic Scale Selection

• Function responses for increasing scale (scale signature)

\[f(I_{i_1...i_m}(x, \sigma)) \]
\[f(I_{i_1...i_m}(x', \sigma')) \]

K. Grauman, B. Leibe
Automatic Scale Selection

- Function responses for increasing scale (scale signature)
Automatic Scale Selection

- Function responses for increasing scale (scale signature)

\[f(I_{i_1\ldots i_m}(x,\sigma)) \]

\[f(I_{i_1\ldots i_m}(x',\sigma')) \]

K. Grauman, B. Leibe
Automatic Scale Selection

- Function responses for increasing scale (scale signature)
Automatic Scale Selection

- Function responses for increasing scale (scale signature)

\[f(I_{i_1 \ldots i_m}(x, \sigma)) \]

\[f(I_{i_1 \ldots i_m}(x', \sigma')) \]

K. Grauman, B. Leibe
Comparison of Keypoint Detectors

<table>
<thead>
<tr>
<th>Feature Detector</th>
<th>Corner</th>
<th>Blob</th>
<th>Region</th>
<th>Rotation invariant</th>
<th>Scale invariant</th>
<th>Affine invariant</th>
<th>Repeatability</th>
<th>Localization accuracy</th>
<th>Robustness</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harris</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Hessian</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>SUSAN</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Harris-Laplace</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Hessian-Laplace</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>DoG</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>SURF</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Harris-Affine</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Hessian-Affine</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Salient Regions</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓ (✓)</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Edge-based</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>MSER</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Intensity-based</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Superpixels</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓ (✓) (✓)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
What we will learn today?

• Local invariant features
 – Motivation
 – Requirements, invariances

• Keypoint localization
 – Harris corner detector

• Local features
 – SIFT

• Feature Matching

Some background reading:
Rick Szeliski, Chapter 4.1.1; David Lowe, IJCV 2004
Image Representations: Histograms

Global histogram to represent distribution of features
- Color, texture, depth, ...

Local histogram per detected point

Images from Dave Kauchak
For what things do we compute histograms?

- Color
 - L*a*b* color space
 - HSV color space
- Model local appearance
For what things do we compute histograms?

- Texture
- Local histograms of oriented gradients
- SIFT: Scale Invariant Feature Transform
 – Extremely popular (40k citations)

SIFT – Lowe IJCV 2004
SIFT Orientation Normalization

- Compute orientation histogram
- Select dominant orientation Θ
- Normalize: rotate to fixed orientation

[Lowe, SIFT, 1999]
SIFT Descriptor Extraction

• Given a keypoint with scale and orientation

Gradient magnitude and orientation

8 bin ‘histogram’ - add magnitude amounts!
SIFT Descriptor Extraction

- Within each 4x4 window

Gradient magnitude and orientation

Weight magnitude that is added to 'histogram' by Gaussian

8 bin 'histogram' - add magnitude amounts!
SIFT Descriptor Extraction

• Extract 8 x 16 values into 128-dim vector
• Illumination invariance:
 – Working in gradient space, so robust to $I = I + b$
 – Normalize vector to $[0...1]$
 • Robust to $I = \alpha I$ brightness changes
 – Clamp all vector values > 0.2 to 0.2.
 • Robust to “non-linear illumination effects”
 • Image value saturation / specular highlights
 – Renormalize
Local Descriptors: Shape Context

Count the number of points inside each bin, e.g.:

Count = 4

Count = 10

Log-polar binning:
More precision for nearby points, more flexibility for farther points.

Belongie & Malik, ICCV 2001
Shape Context Descriptor
Review: Local Descriptors

• Most features can be thought of as templates, histograms (counts), or combinations

• The ideal descriptor should be
 – Robust and Distinctive
 – Compact and Efficient

• Most available descriptors focus on edge/gradient information
 – Capture texture information
 – Color rarely used

K. Grauman, B. Leibe
What we will learn today?

• Local invariant features
 – Motivation
 – Requirements, invariances

• Keypoint localization
 – Harris corner detector

• Local features
 – SIFT

• Feature Matching

Some background reading:
Rick Szeliski, Chapter 4.1.1; David Lowe, IJCV 2004
Think-Pair-Share

• Design a feature point matching scheme.

• Two images, I_1 and I_2

• Two sets X_1 and X_2 of feature points
 – Each feature point x_1 has a descriptor

• Distance, bijective/injective/surjective, noise, confidence, computational complexity, generality...
Euclidean distance vs. Cosine Similarity

- **Euclidean distance:**
 \[d(p, q) = d(q, p) = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \cdots + (q_n - p_n)^2} \]
 \[= \sqrt{\sum_{i=1}^{n} (q_i - p_i)^2}. \]
 \[\|q - p\| = \sqrt{(q - p) \cdot (q - p)}. \]

- **Cosine similarity:**
 \[a \cdot b = \|a\|_2 \|b\|_2 \cos \theta \]
 \[\text{similarity} = \cos(\theta) = \frac{A \cdot B}{\|A\|_2 \|B\|_2} \]
 \[\theta = \arccos(\frac{x \cdot y}{|x| |y|}) \]
Feature Matching

• Criteria 1:
 – Compute distance in feature space, e.g., Euclidean distance between 128-dim SIFT descriptors
 – Match point to lowest distance (nearest neighbor)

• Problems:
 – Does everything have a match?
Feature Matching

• Criteria 2:
 – Compute distance in feature space, e.g., Euclidean distance between 128-dim SIFT descriptors
 – Match point to lowest distance (nearest neighbor)
 – Ignore anything higher than threshold (no match!)

• Problems:
 – Threshold is hard to pick
 – Non-distinctive features could have lots of close matches, only one of which is correct
Nearest Neighbor Distance Ratio

Compare distance of closest (NN1) and second-closest (NN2) feature vector neighbor.

- If $\text{NN1} \approx \text{NN2}$, ratio will be ≈ 1 -> matches too close.
- As $\text{NN1} \ll \text{NN2}$, ratio tends to 0.

Sorting by this ratio puts matches in order of confidence. Threshold ratio – but how to choose?
Nearest Neighbor Distance Ratio

- Lowe computed a probability distribution functions of ratios
- 40,000 keypoints with hand-labeled ground truth

Ratio threshold depends on your application’s view on the trade-off between the number of false positives and true positives!
Efficient compute cost

- Naïve looping: Expensive
- Operate on matrices of descriptors
- E.g., for row vectors,

\[\text{features}_{\text{image1}} \times \text{features}_{\text{image2}}^T \]

produces matrix of dot product results for all pairs of features