CSE 152: Computer Vision

Hao Su

Lecture 0: Introduction

Credit: Manmohan Chandraker
Defining computer vision

Wall-E: Fact and Fiction (Minh Do, Princeton University)
Defining computer vision

• Old: Computer programs that can
 • Process image information
 • Recognize instances of objects
 • Find distances of objects

• Modern: Understanding the world based on visual cues
 • Determining factors that govern image formation
 • Recognition across variations
 • Estimate semantic properties of a scene
 • Recognize complex actions
 • Predict long-term behaviors
The summer vision project is an attempt to use our summer workers effectively in the construction of a significant part of a visual system. The particular task was chosen partly because it can be segmented into sub-problems which will allow individuals to work independently and yet participate in the construction of a system complex enough to be a real landmark in the development of "pattern recognition".
Studying computer vision

• Images are everywhere around us

Source: Domo
Studying computer vision

- Images are everywhere around us
- Rapidly emerging technologies
Studying computer vision

- Images are everywhere around us
- Rapidly emerging technologies
- Deep and attractive scientific problems
 - How do we recognize objects?
 - Why do newborn babies respond to face-like shapes?
 - Beautiful marriage of math, physics, biology, CS, engineering

[Farroni et al., 2005]
We Use Computer Vision
Computer vision in living rooms

Microsoft Kinect Xbox

Sportvision first down line
Vision to explore the world

Image from Microsoft Virtual Earth
Vision to explore other worlds

- Panorama stitching
- Stereo imaging
- Navigation
-
Vision to explore all worlds

Including virtual ones!

The Matrix movies, ESC Entertainment, XYZRGB, NRC
Organizing Computer Vision
Broad classes of vision applications

Sense

Understand

Interface

Reconstruct

Recognize

Reorganize
Broad classes of vision applications

- Sense
- Understand
- Interface

Scenes
People
Broad classes of vision applications

- **Sense**
- **Understand**
- **Interface**

- Human-Human
- Human-Machine
- Machine-Machine
Significant progress in recent years

- Sense
- Understand
- Interface

Advanced Driver Assistance Systems
Deep learning is revolutionizing AI

Tic-tac-toe (1952)
Checkers (1994)
Chess (1997)
Atari (2015)
Go (2016)
Computer vision is also riding the wave

- Autonomous driving (Google, Tesla, Mobileye,)
- Augmented reality (HoloLens, Oculus, MagicLeap)
- Social networks (Google, Facebook,)
- Mobile applications
- Surveillance
Augmented Reality
Vision in augmented reality devices

- Gaze tracking
- Head pose estimation
- Object detection
- Depth estimation
- Material and lighting estimation
- Semantic segmentation
Autonomous Driving
Autonomous navigation
The hardness of the problem

- Finding locations
- Localize objects
- Estimate distances
- Understand relations
- Be aware of traffic rules
- Predict future behaviors
- Understand intentions
- Interdependent decisions
Object detection
Semantic segmentation
Real-time navigation

Song and Chandraker, CVPR 2014
Future behavior prediction
Plenty of Other Applications
Mobile phones and tablets

Face recognition

Place recognition
Surveillance
Social media
A Few Challenges in Computer Vision
Why is computer vision difficult?

Viewpoint

Lighting

Scale

Deformation
Why is computer vision difficult?

- Intra-class variation
- Background clutter
- Motion (Source: S. Lazebnik)
- Occlusion
Building Models for Computer Vision
Representation of images
Estimate 3D structure from images
Estimate camera motion
Estimate lighting and material
Machine Learning
Recognition

[Raquel Urtasun]
Machine learning

• Typically in CS: write a program to execute a set of rules
• Computer vision: sometimes very hard to specify rules
• Machine learning: develop own program based on examples
• Training data: input-output pairs
So what does recognition involve?
Verification: is that a bus?
Detection: are there cars?
Identification: is that a picture of Mao?
Object categorization

- sky
- building
- flag
- banner
- face
- street lamp
- wall
- bus
- cars
Scene categorization

- outdoor
- city
- traffic
- ...
Machine learning is a key player

• What is it?
 • Object and scene recognition

• Who is it?
 • Identity recognition

• Where is it?
 • Object detection

• What are they doing?
 • Activities

• All of these are classification problems
 • Choose one class from a list of possible candidates
Recognition has progressed rapidly

![Bar chart showing error rates on ImageNet Visual Recognition Challenge, %](chart.png)

Sources: ImageNet; Stanford Vision Lab
Neural Networks
Traditional Image Categorization: Training phase

Training Images → Training Images

Image Features → Classifier Training

Classifier Training → Trained Classifier

Training Labels

Slide credit: Jia-Bin Huang
Traditional Image Categorization: Testing phase

Training Images

Training
- Training Images
- Training Labels
- Image Features
- Classifier Training
- Trained Classifier

Testing
- Test Image
- Image Features
- Trained Classifier
- Prediction: Outdoor

Slide credit: Jia-Bin Huang
Features have been key

SIFT [Lowe IJCV 04]

HOG [Dalal and Triggs CVPR 05]

SPM [Lazebnik et al. CVPR 06]

Textons

and many others:

SURF, MSER, LBP, GLOH,
Deep learning has led to large gains

- Hierarchical and expressive feature representations
- Trained end-to-end, rather than hand-crafted for each task
- Remarkable in transferring knowledge across tasks
Significant recent impact on the field

Big labeled datasets → Deep learning → GPU technology

Error rates on ImageNet Visual Recognition Challenge, %

Sources: ImageNet; Stanford Vision Lab
Deep learning has opened new areas

- Availability of large-scale image and video data
- Availability of computational power
 - Better and cheaper GPUs
 - Cloud computing resources
- Better understanding of how to train deep neural networks
- Advantages available for many areas of computer vision
 - Recognize objects across shape and appearance variations
 - Data-driven priors for 3D reconstruction
 - Predict long-term future behaviors in complex scenes
 - End-to-end training rather than expensive feature design.
New devices

• Time-of-flight sensors
• Structured light systems
• Light field cameras
• Coded apertures
Large-scale reconstructions

- Internet images pose challenges of scale and outliers
- Reconstructions with millions of images
- Choices to handle data
- Specific optimization approaches

Figure from Agarwal et al.
Real-time 3D vision

• Mobile platforms, embedded systems (IoT devices)
• Stringent demands on computational resources
• Low power platforms (wattage) for automobile ECUs
• Carefully designed and multithreaded architectures

Song and Chandraker, CVPR 2014
Newcombe et al., CVPR 2015
A Few Topics That We Will Study

- Cameras and image formation
- Feature detection and matching
- Structure from Motion
- Multiview stereo
- Optical flow
- Image classification
- Object recognition
- Object detection
- Semantic segmentation
- Support Vector Machines
- Deep Neural Networks
Take-home message

• Computer vision is a key branch of AI
• Enables several modern applications around us
• A lot of highly visible and high-impact activity
• Huge industry interest
• This is a great time to study computer vision!
Course Details
Course details

• Homework assignments
 – Easy problems based directly on class discussions
 – Harder problems may require additional reading
 – Programming in Python might be required
 – Submit PDF to Gradescope before deadline

• Final exam

• Mid-term

• Participation
 – Ask questions, answer questions, engage in discussions
Course details

• Class webpage:
 – https://ucsd-cse-152.github.io/

• Instructor email:
 – haosu@eng.ucsd.edu

• Grading
 – 40% final exam
 – 30% homework assignments (3)
 – 25% mid-term
 – 05% participation

• Aim is to learn together, discuss and have fun!
Course details

• TAs:
 – Fangchen Liu: fliu@eng.ucsd.edu
 – Fanbo Xiang: fxiang@eng.ucsd.edu
 – Stephen Guerin: sguerin@eng.ucsd.edu

• Discussion section: Fr 4-4:50pm

• TA office hours to be posted on class webpage

• Piazza for questions and discussions:
 – https://piazza.com/class/k0tedcp5nj24g
Test of Background
Background

• Linear algebra
• Calculus
• Probability
• Python

• For each question
 – Write down the answer
 – Self-assess your confidence: scale of 1 (lowest) to 5 (highest)
1(a) What is the rank of a matrix?

Consider the matrix

\[A = \begin{bmatrix} x & x^2 \\ y & y^2 \end{bmatrix} \]

1(b) What is the rank of A when \(x = 1, y = 2 \)?

1(c) What is the rank of A when \(x = 0, y = 1 \)?

1(d) What is the null space of A when \(x = 2, y = 2 \)?

1(e) Rate your confidence

1: Null space? Where Jedi master Yoda goes to sleep?
3: I kind of know, but not sure.
5: I can do this in my sleep!
Consider the matrix

$$A = \begin{bmatrix} 1 & 0 \\ 2 & 4 \end{bmatrix}$$

2(a) What is the transpose of A?

2(b) Define eigenvalues and eigenvectors of a matrix.

2(c) What are the eigenvalues of A?

2(d) Rate your confidence

1: Transpose? My phone autocorrects it to transport.
3: I kind of know, but not sure.
5: Transcended it!
Linear algebra

Given two vectors, \(a = [1, 2, 3] \) and \(b = [-1, 0, 1] \)

3(a) What is the dot product \(a \cdot b \)?

3(b) What is the cross product \(a \times b \)?

3(c) If \(R \) is a 3 x 3 rotation matrix, what is \(R^T R \)?

3(d) Rate your confidence
 1: Rotation matrix? Gets my head spinning.
 3: I kind of know, but not sure.
 5: You spin me right round!
Probability

4(a) If \(P(A) = 0.5, \ P(B) = 0.4 \) and \(P(AB) = 0.2 \), what is \(P(A \cup B) \)?

4(b) In the above, what is \(P(A|B) \)?

4(c) State the Bayes rule.

4(d) Rate your confidence
 1: Probability? It’s a coin toss.
 3: I kind of know, but not sure.
 5: Keep the dice rolling!
Calculus

5(a) What is the derivative of $f(x) = x^2$?

5(b) What is the partial derivative of $f(x,y) = x^2y$ with respect to y?

5(c) What is the gradient of $f(x, y) = x^2y$?

5(d) State the chain rule of differentiation.

5(e) Rate your confidence
 1: Gradient? Seems a steep climb.
 3: I kind of know, but not sure.
 5: Top of the hill!
Python

6(a) Have you used Python in the past?

6(b) Briefly describe a program or project you wrote in Python.

6(c) Write a snippet: use a loop to print numbers from 1 to 10.

6(d) Have you used NumPy in the past?

6(e) Rate your confidence
 1: NumPy? Does it taste like ApplePie?
 3: I kind of know, but not sure.
 5: I breathe and eat code!