Linear Algebra Primer

Note: the slides are based on CS131 (Juan Carlos et al) and EE263 (by Stephen Boyd et al) at Stanford. Reorganized, revised, and typed by Hao Su
Outline

- Geometry of Linear Algebra
 - Vector spaces
 - Basis, dimension
 - Nullspace, range

- Spectral Decomposition
 - Eigenpairs
 - Spectral theory

- Singular Value Decomposition
 - Geometry of linear maps
 - Singular values, singular vectors
 - Pseudo-inverse

- Matrix Calculus
 - Gradient
Outline

- Geometry of Linear Algebra
 - Vector spaces
 - Basis, dimension
 - Nullspace, range

- Spectral Decomposition
 - Eigenpairs
 - Spectral theory

- Singular Value Decomposition
 - Geometry of linear maps
 - Singular values, singular vectors
 - Pseudo-inverse

- Matrix Calculus
 - Gradient
Vector spaces

A vector space or linear space (over the reals) consists of:

- a set \(\mathcal{V} \)
- a vector sum \(+: \mathcal{V} \times \mathcal{V} \to \mathcal{V}\)
- a scalar multiplication: \(\mathbb{R} \times \mathcal{V} \to \mathcal{V}\)
- a distinguished element \(0 \in \mathcal{V}\)

which satisfy a list of properties.
Vector space axioms

- $x + y = y + x, \forall x, y \in V$
- $(x + y) + z = x + (y + z), \forall x, y, z \in V$
- $0 + x = x, x \in V$
- $\forall x \in V, \exists (-x) \in V$ s.t. $x + (-x) = 0$
- $(\alpha \beta)x = \alpha(\beta x), \forall \alpha, \beta \in \mathbb{R} \forall x \in V$
- $\alpha(x + y) = \alpha x + \alpha y, \forall \alpha \in \mathbb{R}, \forall x, y \in V$
- $(\alpha + \beta)x = \alpha x + \beta x, \forall \alpha, \beta \in \mathbb{R} \forall x \in V$
- $1x = x, \forall x \in V$

+ is commutative
+ is associative
0 is additive identity
existence of additive inverse
scalar mult. is associative
right distributive rule
left distributive rule
1 is mult. identity
Examples

- $\mathcal{V}_1 = \mathbb{R}^n$, with standard (componentwise) vector addition and scalar multiplication
- $\mathcal{V}_2 = \{0\}$ (where $0 \in \mathbb{R}^n$)
- $\mathcal{V}_3 = \text{span}(v_1, v_2, \ldots, v_k)$ where
 \[\text{span}(v_1, v_2, \ldots, v_k) = \{ \alpha_1 v_1 + \cdots + \alpha_k v_k | \alpha_i \in \mathbb{R} \} \]
 and $v_1, \ldots, v_k \in \mathbb{R}^n$
Subspaces

- A **subspace** of a vector space is a **subset** of a vector space which is itself a vector space.
- Roughly speaking, a subspace is closed under vector addition and scalar multiplication.
- Examples \(\mathcal{V}_1, \mathcal{V}_3, \mathcal{V}_3 \) above are subspaces of \(\mathbb{R}^n \).
Basis and dimension

set of vectors \(\{v_1, v_k, \ldots, v_k\} \) is called a **basis** for a vector space \(\mathcal{V} \) if

\[
\mathcal{V} = \text{span}(v_1, v_2, \ldots, v_k)
\]

and

\(\{v_1, v_2, \ldots, v_k\} \) is independent

» equivalently, every \(v \in \mathcal{V} \) can be uniquely expressed as

\[
v = \alpha_1 v_1 + \cdots + \alpha_k v_k
\]

» for a given vector space \(\mathcal{V} \), the number of vectors in any basis is the same

» number of vectors in any basis is called the **dimension** of \(\mathcal{V} \), denoted \(\dim \mathcal{V} \)
Nullspace of a matrix

the nullspace of $A \in \mathbb{R}^{m \times n}$ is defined as

\[
\text{null}(A) = \{x \in \mathbb{R}^n | Ax = 0\}
\]

- $\text{null}(A)$ is set of vectors mapped to zero by $y = Ax$
- $\text{null}(A)$ is set of vectors orthogonal to all rows of A

$\text{null}(A)$ gives
\text{ambiguity} in x given $y = Ax$:
- if $y = Ax$ and $z \in \text{null}(A)$, then $y = A(x + z)$
- conversely, if $y = Ax$ and $y = A\tilde{x}$, then $\tilde{x} = x + z$ for some $z \in \text{null}(A)$

$\text{null}(A)$ is also written $\mathcal{N}(A)$
Zero nullspace

A is called one-to-one if 0 is the only element of its null space

\[\text{null}(A) = \{0\} \]

Equivalently,

- \(x \) can always be uniquely determined from \(y = Ax \) (i.e., the linear transformation \(y = Ax \) doesn't 'lose' information)
- mapping from \(x \) to \(Ax \) is one-to-one: different \(x \)'s map to different \(y \)'s
- columns of \(A \) are independent (hence, a basis for their span)
- \(A \) has a left inverse, i.e., there is a matrix \(B \in \mathbb{R}^{n \times m} \) s.t. \(BA = I \)
- \(A^T A \) is invertible
The range of a matrix A is defined as

$$\text{range}(A) = \{Ax \mid x \in \mathbb{R}^n\} \subseteq \mathbb{R}^m$$

- The set of vectors y for which $Ax = y$ has a solution
- The span of columns of A
- The set of vectors y for which the linear mapping $y = Ax$ can be "hit" by linear mapping $y = Ax$

$\text{range}(A)$ can be interpreted as

- The range of $A \in \mathbb{R}^{m \times n}$ is defined as
Outline

- **Geometry of Linear Algebra**
 - Vector spaces
 - Basis, dimension
 - Nullspace, range

- **Spectral Decomposition**
 - Eigenpairs
 - Spectral theory

- **Singular Value Decomposition**
 - Geometry of linear maps
 - Singular values, singular vectors
 - Pseudo-inverse

- **Matrix Calculus**
 - Gradient
Eigenvector and Eigenvalue

- an eigenvector \(x \) of a linear transformation \(A \) is a non-zero vector that, when \(A \) is applied to it, does not change direction

\[
Ax = \lambda x, \quad x \neq 0.
\]

- applying \(A \) to the vector only scales the vector by the scalar value \(\lambda \), called an eigenvalue.
we want to find all the eigenvalues of A:

$$Ax = \lambda x, \quad x \neq 0.$$

which can be written as:

$$Ax = (\lambda I)x, \quad x \neq 0.$$

therefore:

$$(\lambda I - A)x = 0, \quad x \neq 0.$$
we can solve for eigenvalues by solving:

\[(\lambda I - A)x = 0, \quad x \neq 0.\]

above means that \(\lambda I - A\) is not full rank, thus we can instead solve the above equation as:

\[|\lambda I - A| = 0.\]
	his is called characteristic polynomial of an \(n \times n\) matrix
Diagonalization

- if matrix A can be diagonalized, that is,

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 & \ldots & 0 \\ 0 & \lambda_2 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & \lambda_n \end{pmatrix}$$

- then:

$$AP = P \begin{pmatrix} \lambda_1 & 0 & \ldots & 0 \\ 0 & \lambda_2 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & \lambda_n \end{pmatrix}$$

- write $P = [\vec{\alpha}_1, \ldots, \vec{\alpha}_n]$, the above equation can be rewritten as

$$A\vec{\alpha}_i = \lambda_i \vec{\alpha}_i$$
Diagonalization by Spectral Decomposition

- here is a sufficient (but not necessary) condition
- assuming all \(\lambda_i \)'s are unique, by eigenvalue equation:

\[
AV = VD
\]

\[
A = VDV^{-1}
\]

- why?
 - eigenvectors associated with different eigenvalues are linearly independent, thus \(A \) invertible
 - in fact, if \(A \) is symmetric, \(V \) would be orthonormal and \(A = VDV^T \)
Diagonalization (Summary)

- an $n \times n$ matrix A is diagonalizable if it has n linearly independent (in fact, orthogonal) eigenvectors.
- matrices with n distinct eigenvalues are diagonalizable
Symmetric matrices

Properties

- for a real symmetric matrix A, all the eigenvalues are real
- A is diagonalizable
- the eigenvectors of A are orthonormal

$$A = VDV^T$$
Symmetric matrices

Therefore

\[x^T Ax = x^T VDV^T x = y^T Dy = \sum_{i=1}^{n} \lambda_i y_i^2 \]

where \(y = V^T x \)

so, if we wanted to find the vector \(x \) that

\[
\max_{x \in \mathbb{R}^n} x^T Ax \quad \text{subject to} \quad \|x\|_2^2 = 1
\]
Symmetric matrices

- therefore

\[x^T A x = x^T V D V^T x = y^T D y = \sum_{i=1}^{n} \lambda_i y_i^2 \]

where \(y = V^T x \)

- so, if we wanted to find the vector \(x \) that

\[
\max_{x \in \mathbb{R}^n} x^T A x \quad \text{subject to } \|x\|_2^2 = 1
\]

is the same as finding the eigenvector that corresponds to the largest eigenvalue.
Outline

- Geometry of Linear Algebra
 - Vector spaces
 - Basis, dimension
 - Nullspace, range

- Spectral Decomposition
 - Eigenpairs
 - Spectral theory

- Singular Value Decomposition
 - Geometry of linear maps
 - Singular values, singular vectors
 - Pseudo-inverse

- Matrix Calculus
 - Gradient
Geometry of linear maps

Every matrix $A \in \mathbb{R}^{m \times n}$ maps the unit ball in \mathbb{R}^n to an ellipsoid in \mathbb{R}^m

$$S = \{ x \in \mathbb{R}^n \mid \|x\| \leq 1 \} \quad AS = \{ Ax \mid x \in S \}$$
Singular values and singular vectors

- first, assume $A \in \mathbb{R}^{m \times n}$ is skinny and full rank
- the numbers $\sigma_1, \ldots, \sigma_n > 0$ are called the singular values of A
- the vectors u_1, \ldots, u_n are called the left or output singular vectors of A. These are unit vectors along the principal semiaxes of AS
- the vectors v_1, \ldots, v_n are called the right or input singular vectors of A. These map to the principal semiaxes, so that

$$Av_i = \sigma_i u_i$$
Thin singular value decomposition

\[Av_i = \sigma_i u_i \text{ for } 1 \leq i \leq n \]

For \(A \in \mathbb{R}^{m \times n} \) with \(\text{rank}(A) = n \), let

\[
U = [u_1 \ u_2 \ \ldots \ u_n] \quad \Sigma = \begin{bmatrix} \sigma_1 & & \\ & \sigma_2 & \\ & & \ddots \\ & & & \sigma_n \end{bmatrix} \quad V = [v_1 \ v_2 \ \ldots \ v_n]
\]

the above equation is \(AV = U\Sigma \) and since \(V \) is orthogonal

\[
A = U\Sigma V^T
\]

called the thin SVD of \(A \)
Thin SVD

For $A \in \mathbb{R}^{m \times n}$ with $\text{rank}(A) = r$, the thin SVD is

$$A = U\Sigma V^T = \sum_{i=1}^{r} \sigma_i u_i v_i^T$$

here

- $U \in \mathbb{R}^{m \times r}$ has orthonormal columns,
- $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_r)$, where $\sigma_1 \geq \cdots \geq \sigma_r > 0$
- $V \in \mathbb{R}^{n \times r}$ has orthonormal columns
SVD and eigenvectors

\[A^T A = (U \Sigma V^T)^T (U \Sigma V^T) = V \Sigma^2 V^T \]

hence:

- \(\nu_i \) are eigenvectors of \(A^T A \) (corresponding to nonzero eigenvalues)
- \(\sigma_i = \sqrt{\lambda_i(A^T A)} \) (and \(\lambda_i(A^T A) = 0 \) for \(i > r \))
- \(\|A\| = \sigma_1 \)
SVD and eigenvectors

Similarly,

\[AA^T = (U\Sigma V^T)(U\Sigma V^T)^T = U\Sigma^2 U^T \]

Hence:
- \(u_i \) are eigenvectors of \(AA^T \) (corresponding to nonzero eigenvalues)
- \(\sigma_i = \sqrt{\lambda_i(AA^T)} \) (and \(\lambda_i(AA^T) = 0 \) for \(i > r \))
SVD and range

\[A = U \Sigma V^T \]

- \(u_1, \ldots, u_r \) are orthonormal basis for \(\text{range}(A) \)
- \(v_1, \ldots, v_r \) are orthonormal basis for \(\text{null}(A)^\perp \)
Interpretations

\[A = U \Sigma V^T = \sum_{i=1}^{r} \sigma_i u_i v_i^T \]

linear mapping \(y = Ax \) can be decomposed as

- compute coefficients of \(x \) along input directions \(v_1, \ldots, v_r \)
- scale coefficients by \(\sigma_i \)
- reconstitute along output directions \(u_1, \ldots, u_r \)

difference with eigenvalue decomposition for symmetric \(A \): input and output directions are different
General pseudo-inverse

if $A \neq 0$ has SVD $A = U\Sigma V^T$, the pseudo-inverse or Moore-Penrose inverse of A is

$$A^\dagger = V\Sigma^{-1}U^T$$

- if A is skinny and full rank,

$$A^\dagger = (A^TA)^{-1}A^T$$

gives the least-squares approximate solution $x_{ls} = A^\dagger y$

- if A is fat and full rank,

$$A^\dagger = A^T(AA^T)^{-1}$$

gives the least-norm solution $x_{ln} = A^\dagger y$
Full SVD

SVD of $A \in \mathbb{R}^{m \times n}$ with $\text{rank}(A) = r$

$$A = U_1 \Sigma_1 V_1^T = [u_1 \cdots u_r] \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_r \end{bmatrix} \begin{bmatrix} v_1^T \\ \vdots \\ v_r^T \end{bmatrix}$$

Add extra columns to U and V, and add zero rows/cols to Σ_1
Full SVD

- find $U_2 \in \mathbb{R}^{m \times (m-r)}$ such that $U = [U_1 \ U_2] \in \mathbb{R}^{m \times m}$ is orthogonal
- find $V_2 \in \mathbb{R}^{n \times (n-r)}$ such that $V = [V_1 \ V_2] \in \mathbb{R}^{n \times n}$ is orthogonal
- add zero rows/cols to Σ_1 to form $\Sigma \in \mathbb{R}^{m \times n}$

$$\Sigma = \begin{bmatrix} \Sigma_i & 0_{r \times (n-r)} \\ 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{bmatrix}$$

then the full SVD is

$$A = U_1 \Sigma_1 V_1^T = [\ U_1 \ | \ U_2 \] \begin{bmatrix} \Sigma_i & 0_{r \times (n-r)} \\ 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix}$$

which is $A = U \Sigma V^T$
Image of unit ball under linear transformation

full SVD:

\[A = U \Sigma V^T \]

gives interpretation of \(y = Ax \)

- rotate (by \(V^T \))
- stretch along axes by \(\sigma_i \) (\(\sigma_i = 0 \) for \(i > r \))
- zero-pad (if \(m > n \)) or truncate (if \(m < n \)) to get \(m \)-vector
- rotate (by \(U \))
Outline

- Geometry of Linear Algebra
 - Vector spaces
 - Basis, dimension
 - Nullspace, range

- Spectral Decomposition
 - Eigenpairs
 - Spectral theory

- Singular Value Decomposition
 - Geometry of linear maps
 - Singular values, singular vectors
 - Pseudo-inverse

- Matrix Calculus
 - Gradient
Matrix calculus – the gradient

- let a function \(f : \mathbb{R}^{m \times n} \rightarrow \mathbb{R} \) take as input a matrix \(A \) of size \(m \times n \) and returns a real value
- then the gradient of \(f \):

\[
\nabla_A f(A) \in \mathbb{R}^{m \times n} = \\
\begin{pmatrix}
\frac{\partial f(A)}{\partial A_{11}} & \frac{\partial f(A)}{\partial A_{12}} & \cdots & \frac{\partial f(A)}{\partial A_{1n}} \\
\frac{\partial f(A)}{\partial A_{21}} & \frac{\partial f(A)}{\partial A_{22}} & \cdots & \frac{\partial f(A)}{\partial A_{2n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f(A)}{\partial A_{m1}} & \frac{\partial f(A)}{\partial A_{m2}} & \cdots & \frac{\partial f(A)}{\partial A_{mn}}
\end{pmatrix}
\]
Matrix calculus – the gradient

Properties

- $\nabla_x (f(x) + g(x)) = \nabla_x f(x) + \nabla_x g(x)$
- For $t \in \mathbb{R}$, $\nabla_x (tf(x)) = t\nabla_x f(x)$